[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

Overview

MiVOS (CVPR 2021) - Mask Propagation

Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang

[arXiv] [Paper PDF] [Project Page] [Papers with Code]

Parkour Bike

This repo implements an improved version of the Space-Time Memory Network (STM) and is part of the accompanying code of Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion (MiVOS). It can be used as:

  1. A tool for propagating masks across video frames. Results
  2. An integral component for reproducing and/or improving the performance in MiVOS.
  3. A tool that can compute dense correspondences between two frames. Tutorial

Overall structure and capabilities

MiVOS Mask-Propagation Scribble-to-Mask
DAVIS/YouTube semi-supervised evaluation ✔️
DAVIS interactive evaluation ✔️
User interaction GUI tool ✔️
Dense Correspondences ✔️
Train propagation module ✔️
Train S2M (interaction) module ✔️
Train fusion module ✔️
Generate more synthetic data ✔️

Framework

framework

Requirements

We used these packages/versions in the development of this project. It is likely that higher versions of the same package will also work. This is not an exhaustive list -- other common python packages (e.g. pillow) are expected and not listed.

  • PyTorch 1.7.1
  • torchvision 0.8.2
  • OpenCV 4.2.0
  • progressbar
  • thinspline for training (pip install git+https://github.com/cheind/py-thin-plate-spline)
  • gitpython for training
  • gdown for downloading pretrained models

Refer to the official PyTorch guide for installing PyTorch/torchvision. The rest (except thin spline) can be installed by:

pip install progressbar2 opencv-python gitpython gdown

Main Results

Semi-supervised VOS

FPS is amortized, computed as total processing time / total number of frames irrespective of the number of objects, aka multi-object FPS. All times are measured on an RTX 2080 Ti with IO time excluded. Pre-computed results and evaluation outputs (either from local evaluation or CodaLab output log) are also provided. All evaluations are done in 480p resolution.

(Note: This implementation is not optimal in speed. There are ways to speed it up but we wanted to keep it in its simplest PyTorch form.)

Find all the precomputed results here.

DAVIS 2016 val:

Produced using eval_davis_2016.py

Model Top-k? J F J&F FPS Pre-computed results
Without BL pretraining 87.0 89.0 88.0 15.5 D16_s02_notop
Without BL pretraining ✔️ 89.7 92.1 90.9 16.9 D16_s02
With BL pretraining 87.8 90.0 88.9 15.5 D16_s012_notop
With BL pretraining ✔️ 89.7 92.4 91.0 16.9 D16_s012

DAVIS 2017 val:

Produced using eval_davis.py

Model Top-k? J F J&F FPS Pre-computed results
Without BL pretraining 78.8 84.2 81.5 9.75 D17_s02_notop
Without BL pretraining ✔️ 80.5 85.8 83.1 11.2 D17_s02
With BL pretraining 81.1 86.5 83.8 9.75 D17_s012_notop
With BL pretraining ✔️ 81.7 87.4 84.5 11.2 D17_s012

For YouTubeVOS val and DAVIS test-dev we also tried the kernelized memory (called KM in our code) technique described in Kernelized Memory Network for Video Object Segmentation. It works nicely with our top-k filtering.

YouTubeVOS val:

Produced using eval_youtube.py

Model Kernel Memory (KM)? J-Seen J-Unseen F-Seen F-Unseen Overall Score Pre-computed results
Full model with top-k 80.6 77.3 84.7 85.5 82.0 D17_testdev_s012
Full model with top-k ✔️ 81.6 77.7 85.8 85.9 82.8 D17_testdev_s012_km

DAVIS 2017 test-dev:

Produced using eval_davis.py

Model Kernel Memory (KM)? J F J&F Pre-computed results
Full model with top-k 72.7 80.2 76.5 YV_val_s012
Full model with top-k ✔️ 74.9 82.2 78.6 YV_val_s012_km

Running them yourselves

You can look at the corresponding scripts (eval_davis.py, eval_youtube.py, etc.). The arguments tooltip should give you a rough idea of how to use them. For example, if you have downloaded the datasets and pretrained models using our scripts, you only need to specify the output path: python eval_davis.py --output [somewhere] for DAVIS 2017 validation set evaluation.

Correspondences

The W matrix can be considered as a dense correspondence (affinity) matrix. This is in fact how we used it in the fusion module. See try_correspondence.py for details. We have included a small GUI there to show the correspondences (a point source is used, but a mask/tensor can be used in general).

Try it yourself: python try_correspondence.py.

Source Target
Source 1 Target 1
Source 2 Target 2
Source 3 Target 3

Pretrained models

Here we provide two pretrained models. One is pretrained on static images and transferred to main training (we call it s02: stage 0 -> stage 2); the other is pretrained on both static images and BL30K then transferred to main training (we call it s012). For the s02 model, we train it for 300K (instead of 150K) iterations in the main training stage to offset the extra training. More iterations do not help/help very little. The script download_model.py automatically downloads the s012 model. Put all pretrained models in Mask-Propagation/saves/.

Model Google Drive OneDrive
s02 link link
s012 link link

Training

Data preparation

I recommend either softlinking (ln -s) existing data or use the provided download_datasets.py to structure the datasets as our format. download_datasets.py might download more than what you need -- just comment out things that you don't like. The script does not download BL30K because it is huge (>600GB) and we don't want to crash your harddisks. See below.

├── BL30K
├── DAVIS
│   ├── 2016
│   │   ├── Annotations
│   │   └── ...
│   └── 2017
│       ├── test-dev
│       │   ├── Annotations
│       │   └── ...
│       └── trainval
│           ├── Annotations
│           └── ...
├── Mask-Propagation
├── static
│   ├── BIG_small
│   └── ...
└── YouTube
    ├── all_frames
    │   └── valid_all_frames
    ├── train
    ├── train_480p
    └── valid

BL30K

BL30K is a synthetic dataset rendered using ShapeNet data and Blender. For details, see MiVOS.

You can either use the automatic script download_bl30k.py or download it manually below. Note that each segment is about 115GB in size -- 700GB in total. You are going to need ~1TB of free disk space to run the script (including extraction buffer).

Google Drive is much faster in my experience. Your mileage might vary.

Manual download: [Google Drive] [OneDrive]

Training commands

CUDA_VISIBLE_DEVICES=[a,b] OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port [cccc] --nproc_per_node=2 train.py --id [defg] --stage [h]

We implemented training with Distributed Data Parallel (DDP) with two 11GB GPUs. Replace a, b with the GPU ids, cccc with an unused port number, defg with a unique experiment identifier, and h with the training stage (0/1/2).

The model is trained progressively with different stages (0: static images; 1: BL30K; 2: YouTubeVOS+DAVIS). After each stage finishes, we start the next stage by loading the trained weight.

One concrete example is:

Pre-training on static images: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0

Pre-training on the BL30K dataset: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s01 --load_network [path_to_trained_s0.pth] --stage 1

Main training: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s012 --load_network [path_to_trained_s01.pth] --stage 2

Details

Files to look at

  • model/network.py - Defines the core network.
  • model/model.py - Training procedure.
  • util/hyper_para.py - Hyperparameters that you can provide by specifying command line arguments.

What are the differences?

While I did start building this from STM's official evaluation code, the official training code is not available and therefore a lot of details are missing. My own judgments are used in the engineering of this work.

  • We both use the ResNet-50 backbone up to layer3 but there are a few minor architecture differences elsewhere (e.g. decoder, mask generation in the last layer)
  • This repo does not use the COCO dataset and uses some other static image datasets instead.
  • This repo picks two, instead of three objects for each training sample.
  • Top-k filtering (proposed by us) is included here
  • Our raw performance (without BL30K or top-k) is slightly worse than the original STM model but I believe we train with fewer resources.

Citation

Please cite our paper if you find this repo useful!

@inproceedings{MiVOS_2021,
  title={Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2021}
}

Contact: [email protected]

Comments
  • About BL30K

    About BL30K

    作者您好,我将BL30K的6个压缩包全部下载好,并全部解压之后,在进行第二个阶段的预训练时报错是找不到data/dangjisheng/BL30K/a/BL30K/Annotations/kea03423/00020.png',不知道为什么?我是把6个文件压缩包全部下载好而且全部解压在一个目录下的,为什么会报错缺少文件?期待您的回复。

    image

    image

    opened by longmalongma 31
  • The server remained unresponsive for a long time when I try to train your model.

    The server remained unresponsive for a long time when I try to train your model.

    When I ran this line of code on our server, the server did not respond for a long time. Do you know why?

    UDA_VISIBLE_DEVICES=0 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=1 train.py --id retrain_s0 --stage 0 --batch_size 4

    opened by longmalongma 20
  • subprocess.CalledProcessError

    subprocess.CalledProcessError

    Hi, thanks for your great work! When I try to run CUDA_VISIBLE_DEVICES=0 OMP_NUM_THREADS=4 python -m torch.distrib uted.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0 , I meet this problem, can you help me?

    File "/home/longma/anaconda2/envs/p3torchstm/lib/python3.6/site-packages/torch/distributed/launch.py", line 242, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/longma/anaconda2/envs/p3torchstm/bin/python', '-u', 'train.py', '--local_rank=1', '--id', 'retrain_s0', '--stage', '0']' returned non-zero exit status 1.

    opened by longmalongma 19
  • how to save the feature map of manymemory frames?

    how to save the feature map of manymemory frames?

    There is a part of your code that I don't understand. Should the memory frame be stored separately, or should the key-value feture map and the content feature map of the memory frame be connected together to save?Which line represents the memory frame saved?

    opened by longmalongma 10
  • Pre-training on the BL30K dataset after pre-training on static images

    Pre-training on the BL30K dataset after pre-training on static images

    As I see that in the pre-training on static images stage, the "single_object" in PropagationNetwork is True, so the MaskRGBEncoderSO is used. When I try to load the pre-trained of the above stage for the pre-training on the BL30K dataset or Main training, the "single_object" now is False and the model use MaskRGBEncoder instead. After that, the model can not load the model successfully. Here is the error: Traceback (most recent call last): File "train.py", line 68, in <module> total_iter = model.load_model(para['load_model']) File "/content/Mask-Propagation/model/model.py", line 180, in load_model self.PNet.module.load_state_dict(network) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1224, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for PropagationNetwork: size mismatch for mask_rgb_encoder.conv1.weight: copying a param with shape torch.Size([64, 4, 7, 7]) from checkpoint, the shape in current model is torch.Size([64, 5, 7, 7]).

    So can you explain how can we fix it? Thank you so much.

    opened by nero1342 9
  • RuntimeError: Error(s) in loading state_dict for PropagationNetwork

    RuntimeError: Error(s) in loading state_dict for PropagationNetwork

    Hello ! I want to train the PropagationNetwork on my personal image dataset, so I use the training command CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s01 --load_network ./saves/propagation_model.pth --stage 0.(based on the pretrain model S012). It threw a runtime error.

    loadnetwork_error The training command works fine without the --load network parameters. Could you give me some suggestions?

    opened by xwhkkk 5
  • metrics results of test dataset

    metrics results of test dataset

    After I run the code eval_davis_2016.py, I only get the mask file in the output file. how could I get the value of metrics such as J, J&F? and how could we test the model on personal datasets to get those metrics after using interactive_gui.py? Thanks for your suggestions

    opened by xwhkkk 4
  • J&F performance on BL30K

    J&F performance on BL30K

    Hi, I am doing BL30K training for DAVIS 2017 val (including stage 0 and stage 1). I just want to know what J&F should I achieve on the DAVIS 2017 val after finishing BL30K training? Therefore, I can check whether my training is correct. I think it did not included in readme.

    opened by vateye 4
  • How to run two copies of your code at the same time?

    How to run two copies of your code at the same time?

    image

    I have duplicated two copies of your code and made small changes in the duplicated code respectively. When one is being trained, the other one cannot be trained. If the two codes are trained at the same time, what parameters need to be changed?One of my computers has 4 2080ti, the memory is enough.

    opened by longmalongma 4
  • Why don't you use top_k and km during the training phase?

    Why don't you use top_k and km during the training phase?

    Looking at your code I was a little confused why you didn't use top_k and km during the training phase. But top_k and km are used in the evaluation phase, right?Is it bad to use top_k and km in training?

    opened by longmalongma 4
  • RuntimeError: CUDA error: out of memory

    RuntimeError: CUDA error: out of memory

    How many GPUs do you need to test on Davis and YouTube?I keep reporting memory errors during my tests.I directly used the model trained by static pictures for VOS training, skipping the pre-training of BL30K. Is that OK?

    opened by longmalongma 4
Releases(1.0)
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023