[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Overview

Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion (MiVOS)

Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang

CVPR 2021

[arXiv] [Paper PDF] [Project Page] [Demo] [Papers with Code]

demo1 demo2 demo3

Credit (left to right): DAVIS 2017, Academy of Historical Fencing, Modern History TV

We manage the project using three different repositories (which are actually in the paper title). This is the main repo, see also Mask-Propagation and Scribble-to-Mask.

Overall structure and capabilities

MiVOS Mask-Propagation Scribble-to-Mask
DAVIS/YouTube semi-supervised evaluation ✔️
DAVIS interactive evaluation ✔️
User interaction GUI tool ✔️
Dense Correspondences ✔️
Train propagation module ✔️
Train S2M (interaction) module ✔️
Train fusion module ✔️
Generate more synthetic data ✔️

Framework

framework

Requirements

We used these packages/versions in the development of this project. It is likely that higher versions of the same package will also work. This is not an exhaustive list -- other common python packages (e.g. pillow) are expected and not listed.

Refer to the official PyTorch guide for installing PyTorch/torchvision. The rest can be installed by:

pip install PyQt5 davisinteractive progressbar2 opencv-python networkx gitpython gdown Cython

Quick start

  1. python download_model.py to get all the required models.
  2. python interactive_gui.py --video or python interactive_gui.py --images . A video has been prepared for you at examples/example.mp4.
  3. If you need to label more than one object, additionally specify --num_objects
  4. There are instructions in the GUI. You can also watch the demo videos for some ideas.

Main Results

DAVIS/YouTube semi-supervised results

DAVIS Interactive Track

All results are generated using the unmodified official DAVIS interactive bot without saving masks (--save_mask not specified) and with an RTX 2080Ti. We follow the official protocol.

Precomputed result, with the json summary: [Google Drive] [OneDrive]

eval_interactive_davis.py

Model AUC-J&F J&F @ 60s
Baseline 86.0 86.6
(+) Top-k 87.2 87.8
(+) BL30K pretraining 87.4 88.0
(+) Learnable fusion 87.6 88.2
(+) Difference-aware fusion (full model) 87.9 88.5

Pretrained models

python download_model.py should get you all the models that you need. (pip install gdown required.)

[OneDrive Mirror]

Training

Data preparation

Datasets should be arranged as the following layout. You can use download_datasets.py (same as the one Mask-Propagation) to get the DAVIS dataset and manually download and extract fusion_data ([OneDrive]) and BL30K.

├── BL30K
├── DAVIS
│   └── 2017
│       ├── test-dev
│       │   ├── Annotations
│       │   └── ...
│       └── trainval
│           ├── Annotations
│           └── ...
├── fusion_data
└── MiVOS

BL30K

BL30K is a synthetic dataset rendered using Blender with ShapeNet's data. We break the dataset into six segments, each with approximately 5K videos. The videos are organized in a similar format as DAVIS and YouTubeVOS, so dataloaders for those datasets can be used directly. Each video is 160 frames long, and each frame has a resolution of 768*512. There are 3-5 objects per video, and each object has a random smooth trajectory -- we tried to optimize the trajectories greedily to minimize object intersection (not guaranteed), with occlusions still possible (happen a lot in reality). See generation/blender/generate_yaml.py for details.

We noted that using probably half of the data is sufficient to reach full performance (although we still used all), but using less than one-sixth (5K) is insufficient.

Download

You can either use the automatic script download_bl30k.py or download it manually below. Note that each segment is about 115GB in size -- 700GB in total. You are going to need ~1TB of free disk space to run the script (including extraction buffer).

Google Drive is much faster in my experience. Your mileage might vary.

Manual download: [Google Drive] [OneDrive]

Generation

  1. Download ShapeNet.
  2. Install Blender. (We used 2.82)
  3. Download a bunch of background and texture images. We used this repo (we specified "non-commercial reuse" in the script) and the list of keywords are provided in generation/blender/*.json.
  4. Generate a list of configuration files (generation/blender/generate_yaml.py).
  5. Run rendering on the configurations. See here (Not documented in detail, ask if you have a question)

Fusion data

We use the propagation module to run through some data and obtain real outputs to train the fusion module. See the script generate_fusion.py.

Or you can download pre-generated fusion data:

Training commands

These commands are to train the fusion module only.

CUDA_VISIBLE_DEVICES=[a,b] OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port [cccc] --nproc_per_node=2 train.py --id [defg] --stage [h]

We implemented training with Distributed Data Parallel (DDP) with two 11GB GPUs. Replace a, b with the GPU ids, cccc with an unused port number, defg with a unique experiment identifier, and h with the training stage (0/1).

The model is trained progressively with different stages (0: BL30K; 1: DAVIS). After each stage finishes, we start the next stage by loading the trained weight. A pretrained propagation model is required to train the fusion module.

One concrete example is:

Pre-training on the BL30K dataset: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 7550 --nproc_per_node=2 train.py --load_prop saves/propagation_model.pth --stage 0 --id retrain_s0

Main training: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 7550 --nproc_per_node=2 train.py --load_prop saves/propagation_model.pth --stage 1 --id retrain_s012 --load_network [path_to_trained_s0.pth]

Credit

f-BRS: https://github.com/saic-vul/fbrs_interactive_segmentation

ivs-demo: https://github.com/seoungwugoh/ivs-demo

deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

STM: https://github.com/seoungwugoh/STM

BlenderProc: https://github.com/DLR-RM/BlenderProc

Citation

Please cite our paper if you find this repo useful!

@inproceedings{MiVOS_2021,
  title={Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2021}
}

Contact: [email protected]

Comments
  • Some problem when train Fusion

    Some problem when train Fusion

    Hello, I encountered some problems when retraining the fusion model. Some key parameter guidelines for training fusion are not given in the code warehouse. Can you provide it? Specifically as follows: (1) generate_fusion.py: parameter "separation" not given

    Can you provide the relevant parameter descriptions of fusion training and the instructions to run so that I can reproduce the results of your paper?

    and when I try to train(python train.py),I meet some code mistake in fusion_dataset.py: (1)are there some mistake When you assign a value to self.vid_to_instance? and It will return error at: self.videos = [v for v in self.videos if v in self.vid_to_instance](line 60 in fusion_datast.py)

    opened by nazimii 12
  • Process killed

    Process killed

    I tried the MIVOS + STCN on a 1.5 minute 4k video that was down sampled to 480p and the program crashed.

    What are the steps to reformat/sample a 4k video to make it work for this tool?

    Also can this tool run on multiple GPUs?

    opened by zdhernandez 11
  • Fine-tune guidance

    Fine-tune guidance

    Hi really loved the work, I'm trying to fine-tune the downloaded models(using the downlaod_model.py) to another domain. I was wondering if you could help me where to put the data and which command to run the training.

    Thank you

    opened by be-redAsmara 8
  • RuntimeError: " not implemented for 'BFloat16'(example.mp4)">

    RuntimeError: "slow_conv_dilated<>" not implemented for 'BFloat16'(example.mp4)

    Hello! I followed the instructions of Quickstart with these settings: python interactive_gui.py --video .\example\example.mp4 As I don't have a GPU, I change the map location to 'CPU'. When I select the "click" radio button and click on the object to create the mask, a runtime error is thrown. image Could you give me some suggestions? Looking forward to your reply.

    opened by xwhkkk 6
  • -- images mem_profile 2 | RuntimeError: All input tensors must be on the same device. Received cpu and cuda:0

    -- images mem_profile 2 | RuntimeError: All input tensors must be on the same device. Received cpu and cuda:0

    To replicate:

    • create folder with only one image
    • with these settings run: python interactive_gui.py --mem_profile 2 --images ./example/test_folder/
    • select the "click" radio button
    • click on the image to create mask
    • select "scribble" radio button
    • "scribble" an area in the picture
    • runtime error is thrown Screenshot from 2021-12-03 22-06-00
    opened by zdhernandez 5
  • Overlay and Mask files not equal to size of original input image.

    Overlay and Mask files not equal to size of original input image.

    @hkchengrex Doing one image larger than 1k resolution in one folder with command: python interactive_gui.py --mem_profile 2 --images ./example/test_folder/

    • clicking on an object to produce the mask
    • click "save" to save the overlay and masks
    • Both overlay and mask files are reduced to a fix resolution of: width: 480px, height: 640px

    Q. Can we keep the size of the output files to be equal to the input size of the original image? Q. Can we add a flag to use either current behavior or preserve the resolution of the input image ?

    opened by zdhernandez 4
  • Getting

    Getting "ValueError: Davis root folder must be named "DAVIS" Error when i try run eval_interactive_davis.py

    Getting "ValueError: Davis root folder must be named "DAVIS" Error when i try run eval_interactive_davis.py

    Traceback (most recent call last): File "/home/bereket/Desktop/IRCAD-Data/MiVOS/MiVOS-MiVOS-STCN/eval_interactive_davis.py", line 76, in with DavisInteractiveSession(davis_root=davis_path+'/trainval', report_save_dir='../output', max_nb_interactions=8, max_time=8*30) as sess: File "/home/bereket/anaconda3/envs/ivos/lib/python3.9/site-packages/davisinteractive/session/session.py", line 89, in enter samples, max_t, max_i = self.connector.start_session( File "/home/bereket/anaconda3/envs/ivos/lib/python3.9/site-packages/davisinteractive/connector/local.py", line 29, in start_session self.service = EvaluationService(davis_root=davis_root) File "/home/bereket/anaconda3/envs/ivos/lib/python3.9/site-packages/davisinteractive/evaluation/service.py", line 27, in init self.davis = Davis(davis_root=davis_root) File "/home/bereket/anaconda3/envs/ivos/lib/python3.9/site-packages/davisinteractive/dataset/davis.py", line 93, in init raise ValueError('Davis root folder must be named "DAVIS"') ValueError: Davis root folder must be named "DAVIS"

    opened by be-redAsmara 4
  • Processing on long video with high resolution

    Processing on long video with high resolution

    Hello! Thank you for the amazing framework!

    I have an issue while processing on long video with high resolution. I ran out of GPU memory. As I understand, mivos tries to upload all images directly to GPU and if the video is too long or in high-resolution mivos can't handle such cases. Is there is a way to fix this issue? Maybe modify code to work with data chunks?

    Thank you in advance!

    opened by devidlatkin 4
  • Has anyone met the following problem during the running of

    Has anyone met the following problem during the running of "interactive_gui.py"?

    Traceback (most recent call last): File "interactive_gui.py", line 23, in from PyQt5.QtWidgets import (QWidget, QApplication, QMainWindow, QComboBox, QGridLayout, ImportError: /usr/lib/x86_64-linux-gnu/libQt5Core.so.5: version `Qt_5.15' not found (required by /home/fg/anaconda3/envs/MiVOS/lib/python3.7/site-packages/PyQt5/QtWidgets.abi3.so)

    opened by Starboy-at-earth 4
  • static dataset in download_dataset.py

    static dataset in download_dataset.py

    I note that there are a static dataset in download_dataset.py so, where is this static dataset used?

    and in readme.md, you say, you use BL30K to train fusion model, and the BL30K is very large(600G), so ,you use 600 G dataset to pretrain fusion model?

    opened by nazimii 3
  • Temporal Information

    Temporal Information

    Hi, I am interested in your project and I would like to go in detail for an aspect related to temporal information. Are you training your model on video datasets? Are you getting temporal information from the dataset? or your model has been trained on single images considering only spatial information?

    Thank you so much. Best, Francesca

    opened by FrancescaCi 3
  • CPU profile 2 process throwing CUDA out of memory for one image with multiple items when propagate button is clicked

    CPU profile 2 process throwing CUDA out of memory for one image with multiple items when propagate button is clicked

    @hkchengrex To replicate:

    • load only one image of width(3024 by 4032) in folder./example/test_folder/
    • run command: python interactive_gui.py --mem_profile 2 --images ./example/test_folder/ --resolution -1 --num_objects 4
    • click on one object to create overlay of the first object (red)
    • select num keypad 2 and click a different object (to produce overlay of different color)
    • select num keypag 3 and click a different object (to produce overlay of different color)
    • select num keypag 3 and click a different object (to produce overlay of different color)
    • click "propagate" Throws error. See picture. Screenshot from 2021-12-11 12-03-39

    Even though I am doing one image if I click "Save" it does what is supposed to to (save overlay and mask). But clicking "Propagate" should not throw and error with cuda when --mem_profile was set to 2, right ? should not have used GPU.

    opened by zdhernandez 7
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022