Fortuitous Forgetting in Connectionist Networks

Overview

Fortuitous Forgetting in Connectionist Networks

Introduction

This repository includes reference code for the paper Fortuitous Forgetting in Connectionist Networks (ICLR 2022).

@inproceedings{
  zhou2022fortuitous,
  title={Fortuitous Forgetting in Connectionist Networks},
  author={Hattie Zhou and Ankit Vani and Hugo Larochelle and Aaron Courville},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=ei3SY1_zYsE}
}

Targeted Forgetting

This code implements the experiments on partial weight perturbations and their effects on easy or hard examples. Scripts are stored in /targeted_forgetting.

To run KE-style forgetting:

python mixed_group_training.py --seed 1 --train_perc 0.1 --random_perc 0.1 --keep_perc 0.5 --train_iters 50000 --fname new_rand_reinit_train0.1_mislabel0.1 --no_wandb

To run IMP-style forgetting:

python mixed_group_training.py --seed 1 --train_perc 1 --random_perc 0.0 --keep_perc 0.3 --train_iters 50000 --weight_mask --reset_to_zero --rewind_to_init --margin_groups --fname new_weight_rewind_zero_train1_margin0.1 --no_wandb

Later Layer Forgetting

This code builds upon the repository for Knowledge Evolution in Neural Networks. Scripts are stored in /llf_ke.

To run 10 generations of LLF on the Flower102 dataset:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18 --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --set Flower102 --data $DATA_DIR --no_wandb

To run 10 generations of KE:

python train_KE_cls.py --epochs 200 --num_generations 11 --name ke_kels_flower_resnet18 --weight_decay 0.0001 --arch Split_ResNet18 --split_rate 0.8 --split_mode kels --set Flower102 --data $DATA_DIR --no_wandb

To run 10 generations-equivalent of the long baseline on the Flower102 dataset:

python train_KE_cls.py --epochs 2200 --num_generations 1 --name resetlayer4_flower_resnet18_long2200 --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --set Flower102 --eval_intermediate_tst 200 --data $DATA_DIR --no_wandb

To run freeze later layers experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_reset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --reverse_freeze --freeze_non_reset --optimizer sgd_TEMP --no_wandb

To run freeze early layers experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_nonreset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --freeze_non_reset --optimizer sgd_TEMP --no_wandb

To run freeze later layers with fixed seed experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_reset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --reverse_freeze --freeze_non_reset --optimizer sgd_TEMP --seed 0 --fix_seed --no_wandb

Ease-of-teaching

This code builds upon the repository for Ease-of-Teaching and Language Structure from Emergent Communication. Scripts are stored in /ease_of_teaching.

To run the no reset baseline:

python forget_train.py --fname baseline_no_reset --seed 0 --no_wandb

To run the reset receiver baseline:

python forget_train.py --resetNum 50 --fname baseline_reset_receiver --seed 0 --reset_receiver --no_wandb

To run partial balanced forgetting (PBF):

python forget_train.py --resetNum 100 --fname same_weight_reinit_sender10_receiver10_reset100 --seed 0 --forget_sender --sender_keep_perc 0.1 --forget_receiver --receiver_keep_perc 0.1 --weight_mask --same_mask --no_wandb

To run targeted forgettine experiments:

python mixed_language_forget_samebatch.py --group_vars same_mask weight_mask reset_to_zero keep_perc seed trainIters train_with_reset reset_every --seed 0 --keep_perc 0.5 --fname new_rand_reinit

python mixed_language_forget_samebatch.py --group_vars same_mask weight_mask reset_to_zero keep_perc seed trainIters train_with_reset reset_every --seed 0 --keep_perc 0.5 --fname same_weight_zero --same_mask --weight_mask --reset_to_zero

Owner
Hattie Zhou
Hattie Zhou
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022