fMRIprep Pipeline To Machine Learning

Overview

fMRIprep Pipeline To Machine Learning(Demo)

所有配置均在config.py文件下定义

前置环境(lilab)

  • 各个节点均安装docker,并有fmripre的镜像
  • 可以使用conda中的base环境(相应的第三份包之后更新)

1. fmriprep script on single machine(docker)

config.py中的fMRI_Prep_Job类中配置相应变量,注意在修改cmd时,不能修改{}中的关键字。在执行此步骤时,将自动在bids同级目录下建立processed文件夹,用来存放后处理数据。其中处理后的fmriprep数据存放在processed/frmriprepprceossed/fressurfer中。

class fMRI_Prep_Job:
    # input data path
    bids_data_path  = "/share/data2/dataset/ds002748/depression"
    # 一个容器中处理多少个被试 
    step = 8
    # fmriprep opm thread
    thread = 9
    # max work contianers
    max_work_nums = 10

    # 在bids同级目录下创建processed文件夹
    bids_output_path = os.path.join("/".join(bids_data_path.split('/')[:-1]),'processed')
    if not os.path.exists(bids_output_path):
        os.mkdir(bids_output_path)
    # fmri work path 
    fmri_work="/share/fmri_work"
    # freesurfer_license
    freesurfer_license = "/share/user_data/public/fanq_ocd/license.txt"
    # contianer id fmriprep
    contianer_id = "d7235efbbd3c"
    # fmriprep cmd 
    cmd ="docker run -it --rm -v {bids_data_path}:/data -v {freesurfer_license}:/opt/freesurfer/license.txt -v {bids_output_path}:/out -v {fmri_work}:/work {contianer_id} /data /out --skip_bids_validation --ignore slicetiming fieldmaps  -w /work --omp-nthreads {thread} --fs-no-reconall --resource-monitor participant --participant-label {subject_ids}"

2. fmriprep post preocess

这一步的操作主要依赖于fmribrant,主要作用是回归掉白质信号、脑脊液信号、全脑信号、头动信息、并进行滤波(可选),将其处理后的文件放存在prcoessed/post-precoss/ fliter/clean_imgs 中, 可选表示是否进行滤波。该配置中不建议修改dataset_path,store_path

class PostProcess:
    """
    fmriprep 后处理数据
    """
    # 类型的名字
    task_type = "rest"

    dataset_path = os.path.join(fMRI_Prep_Job.bids_output_path,'fmriprep')

    store_path = os.path.join(fMRI_Prep_Job.bids_output_path,'post-process')

    t_r = 2.5

    low_pass = 0.08

    high_pass = 0.01

    n_process = 40

    if t_r != None:
        store_path = os.path.join(store_path,'filter','clean_imgs')
    else:
        store_path = os.path.join(store_path,'unfilter','clean_imgs')

    os.makedirs(store_path,exist_ok=True)

3.获取ROI级别的时间序列

atlas由271个roi组成,分别是Schaefer_200(皮上),Tianye_54(皮下),Buckner_17(小脑)。由于在fmribrant中实现提取时间序列的功能,简单封装一下。

class RoiTs:
    """
    ROI 级别时间序列
    处理271个全脑roi
    """
    n_process = 40

    # 如果在第二步fmri post process已经滤波之后,不建议再次使用滤波操作
    t_r = None
    
    low_pass = None

    high_pass = None
    
    flag_gs = False #  回归全脑均值为 True 否则为False
    # 以下内容不建议修改

    if flag_gs:
        file_name = "*with_gs.nii.gz"
        ts_file = "GS"
    else:
        file_name = "*without_gs.nii.gz"
        ts_file = "NO_GS"
    
    reg_path = os.path.join(PostProcess.store_path,"*",PostProcess.task_type,file_name)
    
    subject_id_index = -3

    save_path = os.path.join("/".join(PostProcess.store_path.split('/')[:-1]),'timeseries',ts_file)

    os.makedirs(save_path,exist_ok=True)

4. Machine Learning(Baseline)

这一步是可选的,一般先用来看看FC做性别分类、年龄回归的效果如何。只保留粗略结果,详细结果可以使用baseline这个包。

class ML:
    # 选择的subject id 默认是全部
    sub_ids = [i.split('.')[0] for i in os.listdir(RoiTs.save_path)]
    # 量表位置
    csv = pd.read_csv('/share/data2/dataset/ds002748/depression/participants.tsv',sep='\t')
    #取交集
    csv = pd.DataFrame({"participant_id":sub_ids}).merge(csv)
    # 分类的任务
    classifies = ["gender"]
    # 回归的任务
    regressions = ["age"]
    # 分类模型
    classify_models = [SVC(),SVC(C=100),SVC(kernel='linear'),SVC(kernel='linear',C=100)]
    # 回归模型
    regress_models = [SVR(),SVR(C=100),SVR(kernel='linear'),SVR(kernel='linear',C=100)]
    kfold = 3
    # 多少个roi
    rois = 200

5. run

修改script/run.py

from fmriprep_job import run_fmri_prep
from fmriprep_pprocess import  run as pp_run
from roi2ts import run as roi_ts_run
from fast_fc_ml import run as ml_run


if __name__ =='__main__':
    run_fmri_prep() # fmriprep
    pp_run() # fmriprep post process
    roi_ts_run() # get roi time series
    ml_run() # machine learning

然后执行

python run.py

6. To Do

  • 质量控制
Owner
Alien
A student
Alien
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022