NLP-based analysis of poor Chinese movie reviews on Douban

Overview

douban_embedding

豆瓣中文影评差评分析

1. NLP

NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。

下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。

好评 "要是好就奇怪了", 0.19483969 ===>差评 "一星给字幕", 0.0028086603 ===>差评 "演技好,演技好,很差", 0.17192301 ===>差评 "演技好,演技好,演技好,演技好,很差" 0.8373259 ===>好评 ">
    "很好,演技不错", 0.91799414 ===>好评
    "要是好就奇怪了", 0.19483969 ===>差评
    "一星给字幕", 0.0028086603 ===>差评
    "演技好,演技好,很差", 0.17192301 ===>差评
    "演技好,演技好,演技好,演技好,很差" 0.8373259 ===>好评

看完本篇文章,即可获得上述技能。

2. 读取数据

首先我们要找到待训练的数据集,我这里是一个csv文件,里面有从豆瓣上获取的影视评论50000条。

他的格式是如下这样的:

名称 评分 评论 分类
电影名 1分到5分 评论内容 1 好评,0 差评

部分数据是这样的: 2021-10-22_063822.jpg

代码是这样的:

20000: break # 先取前2万条试验,取全部就注释 # 取出训练数据条数,分隔开测试数据条数 training_size = 16000 # 0到16000是训练数据 training_sentences = sentences[0:training_size] training_labels = labels[0:training_size] # 16000以后是测试数据 testing_sentences = sentences[training_size:] testing_labels = labels[training_size:] ">
# 导入包
import csv
import jieba

# 读取csv文件
csv_reader = csv.reader(open("datasets/douban_comments.csv"))

# 存储句子和标签
sentences = []
labels = []

# 循环读出每一行进行处理
i = 1 
for row in csv_reader:
    
    # 评论内容用结巴分词以空格分词
    comments = jieba.cut(row[2]) 
    comment = " ".join(comments)
    sentences.append(comment)
    # 存入标签,1好评,0差评
    labels.append(int(row[3]))

    i = i + 1

    if i > 20000: break # 先取前2万条试验,取全部就注释

# 取出训练数据条数,分隔开测试数据条数
training_size = 16000
# 0到16000是训练数据
training_sentences = sentences[0:training_size]
training_labels = labels[0:training_size]
# 16000以后是测试数据
testing_sentences = sentences[training_size:]
testing_labels = labels[training_size:]

这里面做了几项工作:

  1. 文件逐行读入,选取评论和标签字段。
  2. 评论内容进行分词后存储。
  3. 将数据切分为训练和测试两组。

2.1 中文分词

重点说一下分词。

分词是中文特有的,英文不存在。

下面是一个英文句子。

This is an English sentence.

请问这个句子,有几个词?

有6个,因为每个词之间有空格,计算机可以轻易识别处理。

This is an English sentence .
1 2 3 4 5 6

下面是一个中文句子。

欢迎访问我的掘金博客。

请问这个句子,有几个词?

恐怕你得读几遍,然后结合生活阅历,才能分出来,而且还带着各类纠结。

今天研究的重点不是分词,所以我们一笔带过,采用第三方的结巴分词实现。

安装方法

代码对 Python 2/3 均兼容

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba
  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
  • 手动安装:下载代码文件将 jieba 目录放置于当前目录或者 site-packages 目录
  • 通过 import jieba 来引用

引入之后,调用jieba.cut("欢迎访问我的掘金博客。")就可以分词了。

import jieba
words = jieba.cut("欢迎访问我的掘金博客。"sentence = " ".join(words)
print(sentence# 欢迎 访问 我 的 掘金 博客 。

为什么要有分词?因为词语是语言的最小单位,理解了词语才能理解语言,才知道说了啥。

对于中文来说,同一个的词语在不同语境下,分词方法不一样。

关注下面的“北京大学”:

import jieba
sentence = " ".join(jieba.cut("欢迎来北京大学餐厅")) 
print(sentence# 欢迎 来 北京大学 餐厅
sentence2 = " ".join(jieba.cut("欢迎来北京大学生志愿者中心")) 
print(sentence2# 欢迎 来 北京 大学生 志愿者 中心

所以,中文的自然语言处理难就难在分词。

至此,我们的产物是如下格式:

sentences = ['我 喜欢 你','我 不 喜欢 他',……]
labels = [0,1,……]

3. 文本序列化

文本,其实计算机是无法直接认识文本的,它只认识0和1。

你之所以能看到这些文字、图片,是因为经过了多次转化。

就拿字母A来说,我们用65表示,转为二进制是0100 0001。

二进制 十进制 缩写/字符 解释
0100 0001 65 A 大写字母A
0100 0010 66 B 大写字母B
0100 0011 67 C 大写字母C
0100 0100 68 D 大写字母D
0100 0101 69 E 大写字母E

当你看到A、B、C时,其实到了计算机那里是0100 0001、0100 0010、0100 0011,它喜欢数字。

Tips:这就是为什么当你比较字母大小是发现 A

那么,我们的准备好的文本也需要转换为数字,这样更便于计算。

3.1 fit_on_texts 分类

有一个类叫Tokenizer,它是分词器,用于给文本分类和序列化。

这里的分词器和上面我们说的中文分词不同,因为编程语言是老外发明的,人家不用特意分词,他起名叫分词器,就是给词语分类。

from tensorflow.keras.preprocessing.text import Tokenizer

sentences = ['我 喜欢 你','我 不 喜欢 他']
# 定义分词器
tokenizer = Tokenizer()
# 分词器处理文本,
tokenizer.fit_on_texts(sentences)
print(tokenizer.word_index) # {'我': 1, '喜欢': 2, '你': 3, '不': 4, '他': 5}

上面做的就是找文本里有几类词语,并编上号。

看输出结果知道:2句话最终抽出5种不同的词语,编号1~5。

3.2 texts_to_sequences 文本变序列

文本里所有的词语都有了编号,那么就可以用数字表示文本了。

# 文本转化为数字序列
sequences = tokenizer.texts_to_sequences(sentences)
print(sequences# [[1, 2, 3], [1, 4, 2, 5]]

这样,计算机渐渐露出了笑容。

3.3 pad_sequences 填充序列

虽然给它提供了数字,但这不是标准的,有长有短,计算机就是流水线,只吃统一标准的数据。

pad_sequences 会把序列处理成统一的长度,默认选择里面最长的一条,不够的补0。

from tensorflow.keras.preprocessing.sequence import pad_sequences

# padding='post' 后边填充, padding='pre'前面填充
padded = pad_sequences(sequencespadding='post')
print(padded# [[1 2 3] [1 4 2 5]] -> [[1 2 3 0] [1 4 2 5]]

这样,长度都是一样了,计算机露出了开心的笑容。

少了可以补充,但是如果太长怎么办呢?

太长可以裁剪。

# truncating='post' 裁剪后边, truncating='pre'裁剪前面
padded = pad_sequences(sequencesmaxlen = 3,truncating='pre')
print(padded# [[1, 2, 3], [1, 4, 2, 5]] -> [[1 2 3] [4 2 5]]

至此,我们的产物是这样的格式:

sentences = [[1 2 3 0] [1 4 2 5]]
labels = [0,1,……]

4. 构建模型

所谓模型,就是流水线设备。我们先来看一下流水线是什么感觉。

流水线.gif

流水线2.gif

流水线3.gif

看完了吧,流水线的作用就是进来固定格式的原料,经过一层一层的处理,最终出去固定格式的成品。

模型也是这样,定义一层层的“设备”,配置好流程中的各项“指标”,等待上线生产。

# 构建模型,定义各个层
model = tf.keras.Sequential([
    tf.keras.layers.Embedding(vocab_sizeembedding_diminput_length= max_length),
    tf.keras.layers.GlobalAveragePooling1D(),
    tf.keras.layers.Dense(64activation='relu'),
    tf.keras.layers.Dense(1activation='sigmoid')
])
# 配置训练方法 loss=损失函数 optimizer=优化器 metrics=["准确率”]
model.compile(loss='binary_crossentropy'optimizer='adam'metrics=['accuracy'])

4.1 Sequential 序列

你可以理解为整条流水线,里面包含各类设备(层)。

4.2 Embedding 嵌入层

嵌入层,从字面意思我们就可以感受到这个层的气势。

嵌入.gif

嵌入,就是插了很多个维度。一个词语用多个维度来表示。

下面说维度。

二维的是这样的(长,宽): 坐标系.jpg

三维是这样的(长,宽,高):

三维坐标系.jpg

100维是什么样的,你能想象出来吗?除非物理学家,否则三维以上很难用空间来描述。但是,数据是很好体现的。

性别,职位,年龄,身高,肤色,这一下就是5维了,1000维是不是也能找到。

对于一个词,也是可以嵌入很多维度的。有了维度上的数值,我们就可以理解词语的轻重程度,可以计算词语间的关系。

如果我们给颜色设置R、B、G 3个维度:

颜色 R G B
红色 255 0 0
绿色 0 255 0
蓝色 0 0 255
黄色 255 255 0
白色 255 255 255
黑色 0 0 0

下面见证一下奇迹,懂色彩学的都知道,红色和绿色掺在一起是什么颜色?

来,跟我一起读:红色+绿色=黄色。

到数字上就是:[255,0,0]+[0,255,0] = [255,255,0]

这样,颜色的明暗程度,颜色间的关系,计算机就可以通过计算得出了。

只要标记的合理,其实计算机能够算出:国王+女性=女王、精彩=-糟糕,开心>微笑。

那你说,计算机是不是理解词语意思了,它不像你是感性理解,它全是数值计算。

嵌入层就是给词语标记合理的维度。

我们看一下嵌入层的定义:Embedding(vocab_size, embedding_dim, input_length)

  • vocab_size:字典大小。有多少类词语。
  • embedding_dim:本层的输出大小。一个词用多少维表示。
  • input_length:输入数据的维数。一句话有多少个词语,一般是max_length(训练集的最大长度)。

4.3 GlobalAveragePooling1D 全局平均池化为一维

主要就是降维。我们最终只要一维的一个结果,就是好评或者差评,但是现在维度太多,需要降维。

4.4 Dense

这个也是降维,Dense(64, activation='relu')降到Dense(1, activation='sigmoid'),最终输出一个结果,就像前面流水线输入面粉、水、肉、菜等多种原材料,最终出来的是包子。

神经网络.jpg

4.5 activation 激活函数

activation是激活函数,它的主要作用是提供网络的非线性建模能力。

所谓线性问题就是可以用一条线能解决的问题。 可以来TensorFlow游乐场来试验。

如果是采用线性的思维,神经网络很快就能区分开这两种样本。 relu.gif

但如果是下面的这种样本,画一条直线是解决不了的。

QQ截图20211023164946.jpg

如果是用relu激活函数,就可以很轻易区分。

relu4.gif

这就是激活函数的作用。

常用的有如下几个,下面有它的函数和图形。

未标题-1.jpg

我们用到了relu和sigmoid。

  • relu:线性整流函数(Rectified Linear Unit),最常用的激活函数。
  • sigmoid:也叫Logistic函数,它可以将一个实数映射到(0,1)的区间。

Dense(1, activation='sigmoid')最后一个Dense我们就采用了sigmoid,因为我们的数据集中0是差评,1是好评,我们期望模型的输出结果数值也在0到1之间,这样我们就可以判断是更接近好评还是差评了。

4. 训练模型

4.1 fit 训练

训练模型就相当于启动了流水线机器,传入训练数据和验证数据,调用fit方法就可以训练了。

model.fit(training_padded, training_labels, epochs=num_epochs,
    validation_data=(testing_padded, testing_labels), verbose=2)
# 保存训练集结果
model.save_weights('checkpoint/checkpoint')

启动后,日志打印是这样的:

Epoch 1/10 500/500 - 61s - loss: 0.6088 - accuracy: 0.6648 - val_loss: 0.5582 - val_accuracy: 0.7275 
Epoch 2/10 500/500 - 60s - loss: 0.4156 - accuracy: 0.8130 - val_loss: 0.5656 - val_accuracy: 0.7222 
Epoch 3/10 500/500 - 60s - loss: 0.2820 - accuracy: 0.8823 - val_loss: 0.6518 - val_accuracy: 0.7057

经过训练,神经网络会根据输入和输出自动调节参数,包括确定词语的具体维度,以及维度的数值取多少。这个过程变为黑盒了,这也是人工智能和传统程序设计不同的地方。

最后,调用save_weights可以把结果保存下来。

5. 自动分析结果

5.1 predict 预测

好评' if predicts[i][0] > 0.5 else '===>差评') ">
sentences = [
    "很好,演技不错",
    "要是好就奇怪了",
    "一星给字幕",
    "演技好,演技好,很差",
    "演技好,演技好,演技好,演技好,很差"
]

# 分词处理
v_len = len(sentences)
for i in range(v_len):
    sentences[i] = " ".join(jieba.cut(sentences[i]) )

# 序列化
sequences = tokenizer.texts_to_sequences(sentences)
# 填充为标准长度
padded = pad_sequences(sequences, maxlen= max_length, padding='post', truncating='post')
# 预测
predicts = model.predict(np.array(padded))
# 打印结果
for i in range(len(sentences)):
    print(sentences[i],   predicts[i][0],'===>好评' if predicts[i][0] > 0.5 else '===>差评')

model.predict()会返回预测值,这不是个分类值,是个回归值(也可以做到分类值,比如输出1或者0,但是我们更想观察0.51和0.49有啥区别)。我们假设0.5是分界值,以上是好评,以下是差评。

最终打印出结果:

很好,演技不错 0.93863165 ===>好评 
要是好就奇怪了 0.32386222 ===>差评 
一星给字幕 0.0030411482 ===>差评 
演技好,演技好,很差 0.21595979 ===>差评 
演技好,演技好,演技好,演技好,很差 0.71479297 ===>好评

本文阅读对象为初级人员,为了便于理解,特意省略了部分细节,展现的知识点较为浅薄,旨在介绍流程和原理,仅做入门用。完整代码已上传github,地址点击此处 https://github.com/hlwgy/douban_embedding

An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022