Sample data associated with the Aurora-BP study

Overview

The Aurora-BP Study and Dataset

This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset released alongside the publication of the Aurora-BP study, i.e., Mieloszyk, Rebecca, et al. "A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting." IEEE Journal of Biomedical and Health Informatics (2022). The dataset includes de-identified participant information, raw sensor data aligned with each measurement, and a wide variety of features derived from sensor data. The publishing of this dataset as well as the characterization of multiple feature groups across a broad population and multiple settings are intended to aid future cardiovascular research.

Note that the data contained in this repository represent a very small sample of the full dataset, meant only to illustrate the structure of the files and allow testing with the sample code. For access to the full dataset, see the Data Use Application section below.

Navigation:

  • docs:
    • Data file descriptions, a detailed overview of the Aurora-BP Study protocol, and supplemental results not included in the Aurora-BP Study publication
  • notebooks:
    • Sample Jupyter notebooks and environment files for basic analyses using Aurora-BP Study data
  • sample:
    • Example data files, to run sample Jupyter notebooks and provide researchers a direct look at the data format before application for full data access.

Citation

If you use this repository, part or all of the full dataset, and/or our paper as part of your research, please refer to the dataset as the Aurora-BP dataset and cite the publication as below:


Data Access

Data Access Committee

Requests for data access are reviewed by the Data Access Committee. During review, the submitting investigator and primary investigator may be contacted for verification. The information you will need to gather to submit a Data Use Application as well as a link to the form are listed below. For additional questions regarding data access, contact: [email protected]


Data Use Application

Full data files are stored separately from this repo within an Azure data lake. To gain access to these data files, a data use application (detailed below and on the data lake landing page) must be submitted. Any researcher may submit a data use application, which includes:

  • Principal investigator information
    • Academic credentials, affiliation, contact information, curriculum vitae, signature attesting accuracy of data use application
  • Additional investigator information
    • Academic credentials, affiliation, contact information
  • Research proposal
  • Acknowledgement to comply with data use agreement. Key points are listed below:
    • No sharing of data with anyone outside of approved PI and other specified investigators. New investigators must be reviewed.
    • No data use outside of stated proposal scope
    • No joining of data with other data sources
    • No attempt to identify participants, contact participants, or reconstruct PII
    • Storage with appropriate access control and best practices
    • You may publish (or present papers or articles) on your results from using the data provided that no confidential information of Microsoft and no Personal Information are included in any such publication or presentation
    • Any publication or presentation resulting from use of the data should include reference to the Aurora-BP Study, with full reference to the source publication when appropriate
    • Aurora-BP Study authors and Microsoft are under no obligation to provide any support or additional materials related to the use of these data
    • Aurora-BP Study authors and Microsoft are not liable for any losses, damages, or harms of any kind in connection to the use of these data
    • Aurora-BP Study authors and Microsoft are not responsible or liable for the accuracy, usefulness or availability of these data
    • Primary Investigator will provide a signature of attestation that they have read, understood, and accept the data use agreement
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022