OCRA (Object-Centric Recurrent Attention) source code

Related tags

Deep LearningOCRA
Overview

OCRA (Object-Centric Recurrent Attention) source code

Hossein Adeli and Seoyoung Ahn

Please cite this article if you find this repository useful:


  • For data generation and loading

    1. stimuli_util.ipynb includes all the codes and the instructions for how to generate the datasets for the three tasks; MultiMNIST, MultiMNIST Cluttered and MultiSVHN.
    2. loaddata.py should be updated with the location of the data files for the tasks if not the default used.
  • For training and testing the model:

    1. OCRA_demo.ipynb includes the code for building and training the model. In the first notebook cell, a hyperparameter file should be specified. Parameter files are provided here (different settings are discussed in the supplementary file)

    2. multimnist_params_10glimpse.txt and multimnist_params_3glimpse.txt set all the hyperparameters for MultiMNIST task with 10 and 3 glimpses, respectively.

    OCRA_demo-MultiMNIST_3glimpse_training.ipynb shows how to load a parameter file and train the model.

    1. multimnist_cluttered_params_7glimpse.txt and multimnist_cluttered_params_5glimpse.txt set all the hyperparameters for MultiMNIST Cluttered task with 7 and 5 glimpses, respectively.

    2. multisvhn_params.txt sets all the hyperparameters for the MultiSVHN task with 12 glimpses.

    3. This notebook also includes code for testing a trained model and also for plotting the attention windows for sample images.

    OCRA_demo-cluttered_5steps_loadtrained.ipynb shows how to load a trained model and test it on the test dataset. Example pretrained models are included in the repository under pretrained folder. Download all the pretrained models.

Image-level accuracy averaged from 5 runs

Task (Model name) Error Rate (SD)
MultiMNIST (OCRA-10glimpse) 5.08 (0.17)
Cluttered MultiMNIST (OCRA-7glimpse) 7.12 (1.05)
MultiSVHN (OCRA-12glimpse) 10.07 (0.53)

Validation losses during training

From MultiMNIST OCRA-10glimpse:

From Cluttered MultiMNIST OCRA-7glimpse

Supplementary Results:

Object-centric behavior

The opportunity to observe the object-centric behavior is bigger in the cluttered task. Since the ratio of the glimpse size to the image size is small (covering less than 4 percent of the image), the model needs to optimally move and select the objects to accurately recognize them. Also reducing the number of glimpses has a similar effect, (we experimented with 3 and 5) forcing the model to leverage its object-centric representation to find the objects without being distracted by the noise segments. We include many more examples of the model behavior with both 3 and 5 glimpses to show this behavior.

MultiMNIST Cluttered task with 5 glimpses






MultiMNIST Cluttered task with 3 glimpses





The Street View House Numbers Dataset

We train the model to "read" the digits from left to right by having the order of the predicted sequence match the ground truth from left to right. We allow the model to make 12 glimpses, with the first two not being constrained and the capsule length from every following two glimpses will be read out for the output digit (e.g. the capsule lengths from the 3rd and 4th glimpses are read out to predict digit number 1; the left-most digit and so on). Below are sample behaviors from our model.

The top five rows show the original images, and the bottom five rows show the reconstructions

SVHN_gif

The generation of sample images across 12 glimpses

SVHN_gif

The generatin in a gif fromat

SVHN_gif

The model learns to detect and reconstruct objects. The model achieved ~2.5 percent error rate on recognizing individual digits and ~10 percent error in recognizing whole sequences still lagging SOTA performance on this measure. We believe this to be strongly related to our small two-layer convolutional backbone and we expect to get better results with a deeper one, which we plan to explore next. However, the model shows reasonable attention behavior in performing this task.

Below shows the model's read and write attention behavior as it reads and reconstructs one image.

Herea are a few sample mistakes from our model:

SVHN_error1
ground truth [ 1, 10, 10, 10, 10]
prediction [ 0, 10, 10, 10, 10]

SVHN_error2
ground truth [ 2, 8, 10, 10, 10]
prediction [ 2, 9, 10, 10, 10]

SVHN_error3
ground truth [ 1, 2, 9, 10, 10]
prediction [ 1, 10, 10, 10, 10]

SVHN_error4
ground truth [ 5, 1, 10, 10, 10]
prediction [ 5, 7, 10, 10, 10]


Some MNIST cluttered results

Testing the model on MNIST cluttered dataset with three time steps


Code references:

  1. XifengGuo/CapsNet-Pytorch
  2. kamenbliznashki/generative_models
  3. pitsios-s/SVHN
Owner
Hossein Adeli
Hossein Adeli
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022