[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Related tags

Deep LearningMVDeTr
Overview

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper]

@inproceedings{hou2021multiview,
  title={Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)},
  author={Hou, Yunzhong and Zheng, Liang},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia (MM ’21)},
  year={2021}
}

Overview

We release the PyTorch code for MVDeTr, a state-of-the-art multiview pedestrian detector. Its superior performance should be credited to transformer architectures, updated loss terms, and view-coherent data augmentations. Moreover, MVDeTr is also very efficient and can be trained on a single RTX 2080TI. This repo also includes a simplified version of MVDet, which also runs on a single RTX 2080TI.

Content

MVDeTr Code

This repo is dedicated to the code for MVDeTr.

Dependencies

This code uses the following libraries

  • python
  • pytorch & tochvision
  • numpy
  • matplotlib
  • pillow
  • opencv-python
  • kornia

Data Preparation

By default, all datasets are in ~/Data/. We use MultiviewX and Wildtrack in this project.

Your ~/Data/ folder should look like this

Data
├── MultiviewX/
│   └── ...
└── Wildtrack/ 
    └── ...

Code Preparation

Before running the code, one should go to multiview_detector/models/ops and run bash mask.sh to build the deformable transformer (forked from Deformable DETR).

Training

In order to train classifiers, please run the following,

python main.py -d wildtrack
python main.py -d multiviewx

This should automatically return evaluation results similar to the reported 91.5% MODA on Wildtrack dataset and 93.7% MODA on MultiviewX dataset.

Architectures

This repo supports multiple architecture variants. For MVDeTr, please specify --world_feat deform_trans; for a similar fully convolutional architecture like MVDet, please specify --world_feat conv.

Loss terms

This repo supports multiple loss terms. For the focal loss variant as in MVDeTr, please specify --use_mse 0; for the MSE loss as in MVDet, please specify ----use_mse 1.

Augmentations

This repo includes support for view coherent data augmentation, which applies affine transformations onto the per-view inputs, and then invert the per-view feature maps to maintain multiview coherency.

Pre-trained models

You can download the checkpoints at this link.

Owner
Yunzhong Hou
Yunzhong Hou, a PhD student at ANU.
Yunzhong Hou
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022