Detectron2 for Document Layout Analysis

Overview


Detectron2 trained on PubLayNet dataset

This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Detectron2 implementation.
PubLayNet is a very large dataset for document layout analysis (document segmentation). It can be used to trained semantic segmentation/Object detection models.

NOTE

  • Models are trained on a portion of the dataset (train-0.zip, train-1.zip, train-2.zip, train-3.zip)
  • Trained on total 191,832 images
  • Models are evaluated on dev.zip (~11,000 images)
  • Backbone pretrained on COCO dataset is used but trained from scratch on PubLayNet dataset
  • Trained using Nvidia GTX 1080Ti 11GB
  • Trained on Windows 10

Steps to test pretrained models locally or jump to next section for docker deployment

from detectron2.data import MetadataCatalog
MetadataCatalog.get("dla_val").thing_classes = ['text', 'title', 'list', 'table', 'figure']
  • Then run below command for prediction on single image (change the config file relevant to the model)
python demo/demo.py --config-file configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml --input "<path to image.jpg>" --output <path to save the predicted image> --confidence-threshold 0.5 --opts MODEL.WEIGHTS <path to model_final_trimmed.pth> MODEL.DEVICE cpu

Docker Deployment

  • For local docker deployment for testing use Docker DLA

Benchmarking

Architecture No. images AP AP50 AP75 AP Small AP Medium AP Large Model size full Model size trimmed
MaskRCNN Resnext101_32x8d FPN 3X 191,832 90.574 97.704 95.555 39.904 76.350 95.165 816M 410M
MaskRCNN Resnet101 FPN 3X 191,832 90.335 96.900 94.609 36.588 73.672 94.533 480M 240M
MaskRCNN Resnet50 FPN 3X 191,832 87.219 96.949 94.385 38.164 72.292 94.081 168M

Configuration used for training

Architecture Config file Training Script
MaskRCNN Resnext101_32x8d FPN 3X configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml ./tools/train_net_dla.py
MaskRCNN Resnet101 FPN 3X configs/DLA_mask_rcnn_R_101_FPN_3x.yaml ./tools/train_net_dla.py
MaskRCNN Resnet50 FPN 3X configs/DLA_mask_rcnn_R_50_FPN_3x.yaml ./tools/train_net_dla.py

Some helper code and cli commands

Add the below code in demo/demo.py to get confidence along with label names

from detectron2.data import MetadataCatalog
MetadataCatalog.get("dla_val").thing_classes = ['text', 'title', 'list', 'table', 'figure']

Then run below command for prediction on single image

python demo/demo.py --config-file configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml --input "<path to image.jpg>" --output <path to save the predicted image> --confidence-threshold 0.5 --opts MODEL.WEIGHTS <path to model_final_trimmed.pth> MODEL.DEVICE cpu

TODOs

  • Train MaskRCNN resnet50

Sample results from detectron2


Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.

What's New

  • It is powered by the PyTorch deep learning framework.
  • Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
  • Can be used as a library to support different projects on top of it. We'll open source more research projects in this way.
  • It trains much faster.

See our blog post to see more demos and learn about detectron2.

Installation

See INSTALL.md.

Quick Start

See GETTING_STARTED.md, or the Colab Notebook.

Learn more at our documentation. And see projects/ for some projects that are built on top of detectron2.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the Detectron2 Model Zoo.

License

Detectron2 is released under the Apache 2.0 license.

Citing Detectron

If you use Detectron2 in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}
Owner
Himanshu
:zap: Machine Learning Engineer
Himanshu
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022