This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Overview

Semantic SLAM

This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extracted from object detections in order to create a sparse semantic map of the environment, thus optimizing the drift of the VO/VIO algorithms.

In order to run this package you will need two additional modules

Currently it can extract planar surfaces and create a semantic map from from the following objects:

  • chair
  • tvmonitor
  • book
  • keyboard
  • laptop
  • bucket
  • car

Related Paper:

@ARTICLE{9045978,
  author={Bavle, Hriday and De La Puente, Paloma and How, Jonathan P. and Campoy, Pascual},
  journal={IEEE Access}, 
  title={VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems}, 
  year={2020},
  volume={8},
  number={},
  pages={60704-60718},
  doi={10.1109/ACCESS.2020.2983121}}

Video

Semantic SLAM

How do I set it up?

First install g2o following these instructions (Tested on Kinetic and Melodic Distributions):

- sudo apt-get install ros-$ROS_DISTRO-libg2o
- sudo cp -r /opt/ros/$ROS_DISTRO/lib/libg2o_* /usr/local/lib
- sudo cp -r /opt/ros/$ROS_DISTRO/include/g2o /usr/local/include

Install OctopMap server for map generation capabilities:

- sudo apt install ros-$ROS_DISTRO-octomap*

Try a simple example with pre-recorded VIO pose and a blue bucket detector:

Create a ros workspace and clone the following packages:

  • Download the rosbag:
    wget -P ~/Downloads/ https://www.dropbox.com/s/jnywuvcn2m9ubu2/entire_lab_3_rounds.bag
  • Create a workspace, clone the repo and compile:
    mkdir -p workspace/ros/semantic_slam_ws/src/ && cd workspace/ros/semantic_slam_ws/src/    
    git clone https://github.com/hridaybavle/semantic_slam && git clone https://bitbucket.org/hridaybavle/bucket_detector.git   
    cd .. && catkin build --cmake-args -DCMAKE_BUILD_TYPE=Release
  • Launch and visualize
    source devel/setup.bash
    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  

test

Using Docker Image

If the code is giving problems with you local machine, you can try the docker image created with the repo and the required settings.

Download Docker from: Docker

Follow the commands to run the algorithm with the docker

  docker pull hridaybavle/semantic_slam:v1 	
  docker run --rm -it --net="host" -p 11311:11311 hridaybavle/semantic_slam:v1 bash
  cd ~/workspace/ros/semantic_slam_ws/
  source devel/setup.bash
  roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=false  

Open a new terminal and rviz in local machine

  cd ~/Downloads/ && wget https://raw.githubusercontent.com/hridaybavle/semantic_slam/master/rviz/graph_semantic_slam.rviz
  rviz -d graph_semantic_slam.rviz	

Subsribed Topics

Published Topics

The configurations of the algorithms can be found inside the cfg folder in order to be changed accordingly.

Published TFs

  • map to odom transform: The transform published between the map frame and the odom frame after the corrections from the semantic SLAM.

  • base_link to odom transform: The transform published between the base_link (on the robot) frame and the odom frame as estimated by the VO/VIO algorithm.

You might also like...
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

Pytorch implementation of paper:
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

Sequence lineage information extracted from RKI sequence data repo
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Code for
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

 Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

Comments
  • errors at last step

    errors at last step

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  
    

    I get errors like this and it stucks for a while.

    # Using CSparse poseDim -1 landMarkDim -1 blockordering 0
    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    Initialized mapping thread 
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [semantic_graph_slam_node-9] process has died [pid 23067, exit code -11, cmd /home/nrc/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9*.log
    

    then I get this. It seems that the visualization program doesn't go right.

    [rosbag-2] process has finished cleanly
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/rosbag-2*.log
    

    Is there something I have missed? Thank you!

    opened by ZhengXinyue 8
  • [semantic_graph_slam_node-9] process has died

    [semantic_graph_slam_node-9] process has died

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true
    

    I get errors like this.

    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [ INFO] [1591944956.099907360, 1661396775.076756992]: waitForService: Service [/depth_rectifier_manager/load_nodelet] is now available.
    [ INFO] [1591944956.100243666, 1661396775.076756992]: waitForService: Service [/depth_manager/load_nodelet] is now available.
    [ INFO] [1591944956.545617511, 1661396775.518832629]: Stereo is NOT SUPPORTED
    [ INFO] [1591944956.545842654, 1661396775.518832629]: OpenGl version: 4.5 (GLSL 4.5).
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000748, using 1444 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.001710, using 2303 valid points
    [semantic_graph_slam_node-9] process has died [pid 27314, exit code -9, cmd /home/nrc/hd/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9*.log
    

    When it occurs

    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    

    the program is still mapping , so I think the problem is not caused by 'pcl'.

    I tried to run the launchfile seperately :

    ROS_NAMESPACE=camera/color rosrun image_proc image_proc 
    roslaunch semantic_SLAM shape.launch  
    rosrun semantic_SLAM  semantic_graph_SLAM_node
    

    But at the last step i got 'Segmentation fault :

    add first landmark: 0
    Segmentation fault (core dumped)
    

    Do you have any idea about it? Thanks a lot !!!

    opened by He-Rong 6
  • Dataset download failure problem

    Dataset download failure problem

    Hello, when I run the sample code, I always encounter network interruptions or unknown errors at the last moment when downloading the dataset entire_lab_3_rounds.bag. Can you provide a new way to download the bag?

    opened by kycwx 2
  • Problemas de incompatibilidad de opencv en el bucket detector

    Problemas de incompatibilidad de opencv en el bucket detector

    Hola, he conseguido que ambos paquetes en conjunto (semantic slam y bucket detector) funciones bien en una distro de ubuntu virgen con ROS melodic, sin embargo, cuando migro al pc donde trabajo habitualmente y que tiene ya instaladas dependencias anteriores y demás me encuentro con estos errores referentes a opencv: Captura de pantalla de 2021-05-26 11-29-18 Imagino que se deben a incompatibilidades entre versiones de opencv, podrías confirmarme esto último? Sería posible trabajar con una versión de opencv diferente? Gracias, un saludo!

    opened by iandresolares 2
Releases(2.0.0)
Owner
Hriday Bavle
Postdoctoral Researcher at the University of Luxembourg. My research interests are VO/VIO, SLAM, Perception and Planning applied to Mobile Robots.
Hriday Bavle
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022