HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

Related tags

Deep LearningHSC4D
Overview

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

[Project page | Video]

Getting start

Dataset (Click here to download)

The large indoor and outdoor scenes in our dataset. Left: a climbing gym (1200 m2). Middle: a lab building with an outside courtyard 4000 m2. Right: a loop road scene 4600 m2

Data structure

Dataset root/
├── [Place_holder]/
|  ├── [Place_holder].bvh     # MoCap data from Noitom Axis Studio (PNStudio)
|  ├── [Place_holder]_pos.csv # Every joint's roration, generated from `*_bvh`
|  ├── [Place_holder]_rot.csv # Every joint's translation, generated from `*_bvh`
|  ├── [Place_holder].pcap    # Raw data from the LiDAR
|  └── [Place_holder]_lidar_trajectory.txt  # N×9 format file
├── ...
|
└── scenes/
   ├── [Place_holder].pcd
   ├── [Place_holder]_ground.pcd
   ├── ...
   └── ...
  1. Place_holder can be replaced to campus_raod, climbing_gym, and lab_building.
  2. *_lidar_trajectory.txt is generated by our Mapping method and manually calibrated with corresponding scenes.
  3. *_bvh and *_pcap are raw data from sensors. They will not be used in the following steps.
  4. You can test your SLAM algorithm by using *_pcap captured from Ouster1-64 with 1024×20Hz.

Preparation

  • Download basicModel_neutral_lbs_10_207_0_v1.0.0.pkl and put it in smpl directory.
  • Downloat the dataset and modify dataset_root and data_name in configs/sample.cfg.
dataset_root = /your/path/to/datasets
data_name = campus_road # or lab_building, climbing_gym

Requirement

Our code is tested under:

  • Ubuntu: 18.04
  • Python: 3.8
  • CUDA: 11.0
  • Pytorch: 1.7.0

Installation

conda create -n hsc4d python=3.8
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install open3d chumpy scipy configargparse matplotlib pathlib pandas opencv-python torchgeometry tensorboardx
  • Note: For mask conversion compatibility in PyTorch 1.7.0, you need to manually edit the source file in torchgeometry. Follow the guide here
  $ vi /home/dyd/software/anaconda3/envs/hsc4d/lib/python3.8/site-packages/torchgeometry/core/conversions.py

  # mask_c1 = mask_d2 * (1 - mask_d0_d1)
  # mask_c2 = (1 - mask_d2) * mask_d0_nd1
  # mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
  mask_c1 = mask_d2 * ~(mask_d0_d1)
  mask_c2 = ~(mask_d2) * mask_d0_nd1
  mask_c3 = ~(mask_d2) * ~(mask_d0_nd1)
  • Note: When nvcc fatal error occurs.
export TORCH_CUDA_ARCH_LIST="8.0" #nvcc complier error. nvcc fatal: Unsupported gpu architecture 

Preprocess

  • Transfer Mocap data [Optional, data provided]

    pip install bvhtoolbox # https://github.com/OlafHaag/bvh-toolbox
    bvh2csv /your/path/to/campus_road.bvh
    • Output: campus_road_pos.csv, campus_road_rot.csv
  • LiDAR mapping [Optional, data provided]

    • Process pcap file
      cd initialize
      pip install ouster-sdk 
      python ouster_pcap_to_txt.py -P /your/path/to/campus_road.pcap [-S start_frame] [-E end_frame]
    • Run your Mapping/SLAM algorithm.

    • Coordinate alignment (About 5 degree error after this step)

      1. The human stands as an A-pose before capture, and the human's face direction is regarded as scene's $Y$-axis direction.
      2. Rotate the scene cloud to make its $Z$-axis perpendicular to the starting position's ground.
      3. Translate the scene to make its origin to the first SMPL model's origin on the ground.
      4. LiDAR's ego motion $T^W$ and $R^W$ are translated and rotated as the scene does.
    • Output: campus_road_lidar_trajectory.txt, scenes/campus_road.pcd

  • Data preprocessing for optimization.

    python preprocess.py --dataset_root /your/path/to/datasets -fn campus_road -D 0.1

Data fusion

To be added

Data optimization

python main.py --config configs/sample.cfg

Visualization

To be added

Copyright

The HSC4D dataset is published under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.You must attribute the work in the manner specified by the authors, you may not use this work for commercial purposes and if you alter, transform, or build upon this work, you may distribute the resulting work only under the same license. Contact us if you are interested in commercial usage.

Bibtex

@misc{dai2022hsc4d,
    title={HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR},
    author={Yudi Dai and Yitai Lin and Chenglu Wen and Siqi Shen and Lan Xu and Jingyi Yu and Yuexin Ma and Cheng Wang},
    year={2022},
    eprint={2203.09215},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022