Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Overview

Introduction to Deep Learning course resources

https://www.coursera.org/learn/intro-to-deep-learning

Running on Google Colab (tested for all weeks)

Google has released its own flavour of Jupyter called Colab, which has free GPUs!

Here's how you can use it:

  1. Open https://colab.research.google.com, click Sign in in the upper right corner, use your Google credentials to sign in.
  2. Click GITHUB tab, paste https://github.com/hse-aml/intro-to-dl and press Enter
  3. Choose the notebook you want to open, e.g. week2/v2/mnist_with_keras.ipynb
  4. Click File -> Save a copy in Drive... to save your progress in Google Drive
  5. Click Runtime -> Change runtime type and select GPU in Hardware accelerator box
  6. Execute the following code in the first cell that downloads dependencies (change for your week number):
! shred -u setup_google_colab.py
! wget https://raw.githubusercontent.com/hse-aml/intro-to-dl/master/setup_google_colab.py -O setup_google_colab.py
import setup_google_colab
# please, uncomment the week you're working on
# setup_google_colab.setup_week1()
# setup_google_colab.setup_week2()
# setup_google_colab.setup_week2_honor()
# setup_google_colab.setup_week3()
# setup_google_colab.setup_week4()
# setup_google_colab.setup_week5()
# setup_google_colab.setup_week6()
  1. If you run many notebooks on Colab, they can continue to eat up memory, you can kill them with ! pkill -9 python3 and check with ! nvidia-smi that GPU memory is freed.

Known issues:

  • Blinking animation with IPython.display.clear_output(). It's usable, but still looking for a workaround.

Offline instructions

Coursera Jupyter Environment can be slow if many learners use it heavily. Our tasks are compute-heavy and we recommend to run them on your hardware for optimal performance.

You will need a computer with at least 4GB of RAM.

There're two options to setup the Jupyter Notebooks locally: Docker container and Anaconda.

Docker container option (best for Mac/Linux)

Follow the instructions on https://hub.docker.com/r/zimovnov/coursera-aml-docker/ to install Docker container with all necessary software installed.

After that you should see a Jupyter page in your browser.

Anaconda option (best for Windows)

We highly recommend to install docker environment, but if it's not an option, you can try to install the necessary python modules with Anaconda.

First, install Anaconda with Python 3.5+ from here.

Download conda_requirements.txt from here.

Open terminal on Mac/Linux or "Anaconda Prompt" in Start Menu on Windows and run:

conda config --append channels conda-forge
conda config --append channels menpo
conda install --yes --file conda_requirements.txt

To start Jupyter Notebooks run jupyter notebook on Mac/Linux or "Jupyter Notebook" in Start Menu on Windows.

After that you should see a Jupyter page in your browser.

Prepare resources inside Jupyter Notebooks (for local setups only)

Click New -> Terminal and execute: git clone https://github.com/hse-aml/intro-to-dl.git On Windows you might want to install Git. You can also download all the resources as zip archive from GitHub page.

Close the terminal and refresh Jupyter page, you will see intro-to-dl folder, go there, all the necessary notebooks are waiting for you.

First you need to download necessary resources, to do that open download_resources.ipynb and run cells for Keras and your week.

Now you can open a notebook for the corresponding week and work there just like in Coursera Jupyter Environment.

Using GPU for offline setup (for advanced users)

Comments
  • cannot submit

    cannot submit

    In the first submission for week 3, I couldn't submit. Here is the error: AttributeError: module 'grading_utils' has no attribute 'model_total_params'

    opened by AhmedFrikha 4
  • week4/lfw_dataset.py

    week4/lfw_dataset.py

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-4-856143fffc33> in <module>()
          8 #Those attributes will be required for the final part of the assignment (applying smiles), so please keep them in mind
          9 from lfw_dataset import load_lfw_dataset
    ---> 10 data,attrs = load_lfw_dataset(dimx=36,dimy=36)
         11 
         12 #preprocess faces
    
    ~/GitHub/intro-to-dl/week4/lfw_dataset.py in load_lfw_dataset(use_raw, dx, dy, dimx, dimy)
         52 
         53     # preserve photo_ids order!
    ---> 54     all_attrs = photo_ids.merge(df_attrs, on=('person', 'imagenum')).drop(["person", "imagenum"], axis=1)
         55 
         56     return all_photos, all_attrs
    
    ~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in merge(self, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
       6377                      right_on=right_on, left_index=left_index,
       6378                      right_index=right_index, sort=sort, suffixes=suffixes,
    -> 6379                      copy=copy, indicator=indicator, validate=validate)
       6380 
       6381     def round(self, decimals=0, *args, **kwargs):
    
    ~/anaconda3/lib/python3.6/site-packages/pandas/core/reshape/merge.py in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
         58                          right_index=right_index, sort=sort, suffixes=suffixes,
         59                          copy=copy, indicator=indicator,
    ---> 60                          validate=validate)
         61     return op.get_result()
         62 
    
    ~/anaconda3/lib/python3.6/site-packages/pandas/core/reshape/merge.py in __init__(self, left, right, how, on, left_on, right_on, axis, left_index, right_index, sort, suffixes, copy, indicator, validate)
        552         # validate the merge keys dtypes. We may need to coerce
        553         # to avoid incompat dtypes
    --> 554         self._maybe_coerce_merge_keys()
        555 
        556         # If argument passed to validate,
    
    ~/anaconda3/lib/python3.6/site-packages/pandas/core/reshape/merge.py in _maybe_coerce_merge_keys(self)
        976             # incompatible dtypes GH 9780, GH 15800
        977             elif is_numeric_dtype(lk) and not is_numeric_dtype(rk):
    --> 978                 raise ValueError(msg)
        979             elif not is_numeric_dtype(lk) and is_numeric_dtype(rk):
        980                 raise ValueError(msg)
    
    ValueError: You are trying to merge on int64 and object columns. If you wish to proceed you should use pd.concat
    
    opened by zuenko 4
  • explanation of

    explanation of "download_utils.py"

    def link_all_keras_resources():
        link_all_files_from_dir("../readonly/keras/datasets/", os.path.expanduser("~/.keras/datasets"))
        link_all_files_from_dir("../readonly/keras/models/", os.path.expanduser("~/.keras/models"))
    

    which datas are belong to the datasets and models dir ? (with name).

    def link_week_6_resources():
        link_all_files_from_dir("../readonly/week6/", ".")
    

    which datas are belong to the week6 dir ? (with name).

    Please, explain this two function. I want to run week-6 image_captionong_project into my local jupyter-notebook.

    Please help me . THANKS

    opened by rezwanh001 3
  • NumpyNN (honor).ipynb not able to import util.py

    NumpyNN (honor).ipynb not able to import util.py

    Hi,

    It seems like

    from util import eval_numerical_gradient

    not working. (week 2 honor assignment)

    It can work by manually adding eval_numerical_gradientm function but it would be better if linked.

    Cheers, Nan

    opened by xia0nan 1
  • The Kernel dies after epoch 2 and the callbacks doesn't work, both in Colab & Jupyter notebooks.Please help!!

    The Kernel dies after epoch 2 and the callbacks doesn't work, both in Colab & Jupyter notebooks.Please help!!

    The Kernel dies after epoch 2 and the callbacks doesn't work, both in Colab & Jupyter notebooks. The result is always 6 out of 9 because the progress halts after that. Please help me complete the work and submit the results.

    It's an earnest request to the mentors, tutors , instructors to please consider those students facing such issues and provide assistance.

    As for my case , it's the only project left in the entire specialization and it's completion.

    I will be extremely grateful for the opportunity for the peer review to be made accessible to all the learners whether they are undergoing the same issue for a long span of time or otherwise.

    Will be eagerly awaiting a response.

    Regards,

    Saheli Basu

    opened by MehaRima 0
  • Fixed a typo on line 285.

    Fixed a typo on line 285.

    Original: So far our model is staggeringly inefficient. There is something wring with it. Guess, what?

    Changed to: So far, our model is staggeringly inefficient. There is something wrong with it. Guess, what?

    opened by IAmSuyogJadhav 0
  • KeyError in keras_utils.py

    KeyError in keras_utils.py

    I tried running on my local computer

    model.fit( x_train2, y_train2, # prepared data batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=[keras.callbacks.LearningRateScheduler(lr_scheduler), LrHistory(), keras_utils.TqdmProgressCallback(), keras_utils.ModelSaveCallback(model_filename)], validation_data=(x_test2, y_test2), shuffle=True, verbose=0, initial_epoch=last_finished_epoch or 0 )

    But it returned me this error

    ~\Documents\kkbq\Coursera\Intro to Deep Learning\intro-to-dl\keras_utils.py in _set_prog_bar_desc(self, logs) 27 28 def _set_prog_bar_desc(self, logs): ---> 29 for k in self.params['metrics']: 30 if k in logs: 31 self.log_values_by_metric[k].append(logs[k])

    KeyError: 'metrics'

    Does anyone know why this happened? Thanks.

    opened by samtjong23 0
  • Week 3 - Task 2 issue

    Week 3 - Task 2 issue

    In one of the last cells,

    model.compile(
        loss='categorical_crossentropy',  # we train 102-way classification
        optimizer=keras.optimizers.adamax(lr=1e-2),  # we can take big lr here because we fixed first layers
        metrics=['accuracy']  # report accuracy during training
    )
    

    AttributeError: module 'keras.optimizers' has no attribute 'adamax'

    This can be fixed by changing "adamax" to "Adamax". However, after that the second next cell:

    # fine tune for 2 epochs (full passes through all training data)
    # we make 2*8 epochs, where epoch is 1/8 of our training data to see progress more often
    model.fit_generator(
        train_generator(tr_files, tr_labels), 
        steps_per_epoch=len(tr_files) // BATCH_SIZE // 8,
        epochs=2 * 8,
        validation_data=train_generator(te_files, te_labels), 
        validation_steps=len(te_files) // BATCH_SIZE // 4,
        callbacks=[keras_utils.TqdmProgressCallback(), 
                   keras_utils.ModelSaveCallback(model_filename)],
        verbose=0,
        initial_epoch=last_finished_epoch or 0
    )
    

    throws the following error:

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-183-faf1b24645ff> in <module>()
         10                keras_utils.ModelSaveCallback(model_filename)],
         11     verbose=0,
    ---> 12     initial_epoch=last_finished_epoch or 0
         13 )
    
    2 frames
    /usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
         85                 warnings.warn('Update your `' + object_name +
         86                               '` call to the Keras 2 API: ' + signature, stacklevel=2)
    ---> 87             return func(*args, **kwargs)
         88         wrapper._original_function = func
         89         return wrapper
    
    /usr/local/lib/python3.6/dist-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, initial_epoch)
       1723 
       1724         do_validation = bool(validation_data)
    -> 1725         self._make_train_function()
       1726         if do_validation:
       1727             self._make_test_function()
    
    /usr/local/lib/python3.6/dist-packages/keras/engine/training.py in _make_train_function(self)
        935                 self._collected_trainable_weights,
        936                 self.constraints,
    --> 937                 self.total_loss)
        938             updates = self.updates + training_updates
        939             # Gets loss and metrics. Updates weights at each call.
    
    TypeError: get_updates() takes 3 positional arguments but 4 were given
    

    keras.optimizers.Adamax() inherits the get_updates() method from keras.optimizers.Optimizer(), and that method takes only three arguments (self, loss, params), but _make_train_function is trying to pass four arguments to it.

    As I understand it, the issue here is compatibility between tf 1.x and tf 2. I'm using colab and running the %tensorflow_version 1.x line, as well as the setup cell with week 3 setup uncommented at the start of the notebook.

    All checkpoints up to this point have been passed succesfully.

    opened by nietoo 1
  • conda issue

    conda issue

    Hi there, I face a lot of problem to create the environment. I want to use my GPU as I used to do but here, to run your environment I face a lot a package conflicts. I spent 4 hours trying to to make working tensorflow==1.2.1 & Keras==2.0.6 (with theano ).

    (nvidia-docker does not work on my Debian so I would use a stable conda environment) Please update the co-lab with tensflow 2+

    opened by kakooloukia 0
  • Google colab code addition

    Google colab code addition

    The original code does not work fine in the Google colab. Please add following code: !pip install q keras==2.0.6 to these lines of codes: ! shred -u setup_google_colab.py ! wget https://raw.githubusercontent.com/hse-aml/intro-to-dl/master/setup_google_colab.py -O setup_google_colab.py import setup_google_colab please, uncomment the week you're working on setup_google_colab.setup_week1() setup_google_colab.setup_week2() setup_google_colab.setup_week2_honor() setup_google_colab.setup_week3() setup_google_colab.setup_week4() setup_google_colab.setup_week5() setup_google_colab.setup_week6()

    opened by ansh997 0
Owner
Advanced Machine Learning specialisation by HSE
Advanced Machine Learning specialisation by HSE
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022