Semantic Segmentation in Pytorch

Related tags

Deep Learningsemseg
Overview

PyTorch Semantic Segmentation

Introduction

This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to use for training and testing on various datasets. The codebase mainly uses ResNet50/101/152 as backbone and can be easily adapted to other basic classification structures. Implemented networks including PSPNet and PSANet, which ranked 1st places in ImageNet Scene Parsing Challenge 2016 @ECCV16, LSUN Semantic Segmentation Challenge 2017 @CVPR17 and WAD Drivable Area Segmentation Challenge 2018 @CVPR18. Sample experimented datasets are ADE20K, PASCAL VOC 2012 and Cityscapes.

Update

  • 2020.05.15: Branch master, use official nn.SyncBatchNorm, only multiprocessing training is supported, tested with pytorch 1.4.0.
  • 2019.05.29: Branch 1.0.0, both multithreading training (nn.DataParallel) and multiprocessing training (nn.parallel.DistributedDataParallel) (recommended) are supported. And the later one is much faster. Use syncbn from EncNet and apex, tested with pytorch 1.0.0.

Usage

  1. Highlight:

  2. Requirement:

    • Hardware: 4-8 GPUs (better with >=11G GPU memory)
    • Software: PyTorch>=1.1.0, Python3, tensorboardX,
  3. Clone the repository:

    git clone https://github.com/hszhao/semseg.git
  4. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      cd semseg
      mkdir -p dataset
      ln -s /path_to_ade20k_dataset dataset/ade20k
      
    • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training:

      sh tool/train.sh ade20k pspnet50
    • If you are using SLURM for nodes manager, uncomment lines in train.sh and then do training:

      sbatch tool/train.sh ade20k pspnet50
  5. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
    • Quick demo on one image:

      PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
  6. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=exp/ade20k
  7. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.
    • Former video predictions: high accuracy -- PSPNet, PSANet; high efficiency -- ICNet.

Performance

Description: mIoU/mAcc/aAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. ss denotes single scale testing and ms indicates multi-scale testing. Training time is measured on a sever with 8 GeForce RTX 2080 Ti. General parameters cross different datasets are listed below:

  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), ignore_label(255), aux_weight(0.4), batch_size(16), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255), scales(single: [1.0], multiple: [0.5 0.75 1.0 1.25 1.5 1.75]).
  1. ADE20K: Train Parameters: classes(150), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(100). Test Parameters: classes(150), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.4189/0.5227/0.8039. 0.4284/0.5266/0.8106. 14h
    PSANet50 0.4229/0.5307/0.8032. 0.4305/0.5312/0.8101. 14h
    PSPNet101 0.4310/0.5375/0.8107. 0.4415/0.5426/0.8172. 20h
    PSANet101 0.4337/0.5385/0.8102. 0.4414/0.5392/0.8170. 20h
  2. PSACAL VOC 2012: Train Parameters: classes(21), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(50). Test Parameters: classes(21), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7705/0.8513/0.9489. 0.7802/0.8580/0.9513. 3.3h
    PSANet50 0.7725/0.8569/0.9491. 0.7787/0.8606/0.9508. 3.3h
    PSPNet101 0.7907/0.8636/0.9534. 0.7963/0.8677/0.9550. 5h
    PSANet101 0.7870/0.8642/0.9528. 0.7966/0.8696/0.9549. 5h
  3. Cityscapes: Train Parameters: classes(19), train_h(713/709-PSP/A), train_w(713/709-PSP/A), epochs(200). Test Parameters: classes(19), test_h(713/709-PSP/A), test_w(713/709-PSP/A), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7730/0.8431/0.9597. 0.7838/0.8486/0.9617. 7h
    PSANet50 0.7745/0.8461/0.9600. 0.7818/0.8487/0.9622. 7.5h
    PSPNet101 0.7863/0.8577/0.9614. 0.7929/0.8591/0.9638. 10h
    PSANet101 0.7842/0.8599/0.9621. 0.7940/0.8631/0.9644. 10.5h

Citation

If you find the code or trained models useful, please consider citing:

@misc{semseg2019,
  author={Zhao, Hengshuang},
  title={semseg},
  howpublished={\url{https://github.com/hszhao/semseg}},
  year={2019}
}
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: hengshuangzhao at gmail.com.

Owner
Hengshuang Zhao
Hengshuang Zhao
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022