Code for Paper: Self-supervised Learning of Motion Capture

Related tags

Deep Learning3d_smpl
Overview

Self-supervised Learning of Motion Capture

This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-supervised Learning of Motion Capture, NIPS2017 (Spotlight)

Check the project page for more results.

Content

  • Environment setup and Dataset
  • Data preprocessing
  • Pretrained model and small tfrecords
  • Training
  • Citation
  • License

1. Environment setup and Dataset

  • python We use python2.7.13 from Anaconda and Tensorflow 1.1

  • SMPL model: We need rest body template from SMPL model.

You can download it from here.

  • SURREAL Dataset: If you plan to pretrain or test on surreal dataset.

Please download surreal from here

  • H36M Dataset: If you plan to test on real video with some groundtruth (to evaluate).

Please download H3.6M Dataset from here

2. Data preprocessing

  • Parse Surreal Dataset into binary files

In order to speed up the read write for tfrecords, we parse surreal dataset into binary files. Open file

data/preparsed/main_parse_surreal 

and change the data path and output path.

  • Build up tfrecords

change the data path to the path you built in the previous step in

pack_data/pack_data_bin.py

and run it. You can specify how many examples you want to have in each tfrecords by changing value for num_samples. If "is_test" is False, we use sequences generated from actor 1, 5, 6, 7, 8 as training samples. If "is_test" is True, we use only sequence "" from actor 9 as validation. You can change this split by modifying the "get_file_list" function in tfrecords_utils.py

3. Pretrained model and small tfrecords

You can downdload a pretrained model using supervision from here surreal_quo0.tfrecords is a small training data and surreal2_100_test_quo1.tfrecords

Note: To make this code pack, I calculate 2d flow directly from 3d groundtruth during testing. But you should replace this with your own predicted flow and keypoints.

4. Train model

open up pretrained.sh, there is one commend for pretraining using supervision, and one commend for finetuning with testing data. Commend out the line that you need

Citation

If you use this code, please cite:

@incollection{NIPS2017_7108, title = {Self-supervised Learning of Motion Capture}, author = {Tung, Hsiao-Yu and Tung, Hsiao-Wei and Yumer, Ersin and Fragkiadaki, Katerina}, booktitle = {Advances in Neural Information Processing Systems 30}, editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett}, pages = {5236--5246}, year = {2017}, publisher = {Curran Associates, Inc.}, url = {http://papers.nips.cc/paper/7108-self-supervised-learning-of-motion-capture.pdf} }

Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021