Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Overview

Open in Colab

Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents

[Project Page] [Paper] [Video]

Wenlong Huang1, Pieter Abbeel1, Deepak Pathak*2, Igor Mordatch*3 (*equal advising)

1University of California, Berkeley, 2Carnegie Mellon University, 3Google Brain

This is the official demo code for our Language Models as Zero-Shot Planners paper. The code demonstrates how Large Language Models, such as GPT-3 and Codex, can generate action plans for complex human activities (e.g. "make breakfast"), even without any further training. The code can be used with any available language models from OpenAI API and Huggingface Transformers with a common interface.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2022language,
      title={Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents},
      author={Huang, Wenlong and Abbeel, Pieter and Pathak, Deepak and Mordatch, Igor},
      journal={arXiv preprint arXiv:2201.07207},
      year={2022}
    }

Local Setup or Open in Colab

Requirements

  • Python=3.6.13
  • CUDA=11.3

Setup Instructions

git clone https://github.com/huangwl18/language-planner.git
cd language-planner/
conda create --name language-planner-env python=3.6.13
conda activate language-planner-env
pip install --upgrade pip
pip install -r requirements.txt

Running Code

See demo.ipynb (or Open in Colab) for a complete walk-through of our method. Feel free to experiment with any household tasks that you come up with (or any tasks beyond household domain if you provide necessary actions in available_actions.json)!

Note:

  • It is observed that best results can be obtained with larger language models. If you cannot run Huggingface Transformers models locally or on Google Colab due to memory constraint, it is recommended to register an OpenAI API account and use GPT-3 or Codex (As of 01/2022, $18 free credits are awarded to new accounts and Codex series are free after admitted from the waitlist).
  • Due to language models' high sensitivity to sampling hyperparameters, you may need to tune sampling hyperparameters for different models to obtain the best results.
  • The code uses the list of available actions supported in VirtualHome 1.0's Evolving Graph Simulator. The available actions are stored in available_actions.json. The actions should support a large variety of household tasks. However, you may modify or replace this file if you're interested in a different set of actions or a different domain of tasks (beyond household domain).
  • A subset of the manually-annotated examples originally collected by the VirtualHome paper is used as available examples in the prompt. They are transformed to natural language format and stored in available_examples.json. Feel free to change this file for a different set of available examples.
Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022