Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

Overview

AdderNet: Do We Really Need Multiplications in Deep Learning?

This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in Deep Learning?

We present adder networks (AdderNets) to trade massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the L1-norm distance between filters and input feature as the output response. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

UPDATE: The training code is released in 6/28.

Run python main.py to train on CIFAR-10.

UPDATE: Model Zoo about AdderNets are released in 11/27.

Classification results on CIFAR-10 and CIFAR-100 datasets.

Model Method CIFAR-10 CIFAR-100
VGG-small ANN [1] 93.72% 74.58%
PKKD ANN [2] 95.03% 76.94%
ResNet-20 ANN 92.02% 67.60%
PKKD ANN 92.96% 69.93%
ShiftAddNet* [3] 89.32%(160epoch) -
ResNet-32 ANN 93.01% 69.17%
PKKD ANN 93.62% 72.41%

Classification results on ImageNet dataset.

Model Method Top-1 Acc Top-5 Acc
ResNet-18 CNN 69.8% 89.1%
ANN [1] 67.0% 87.6%
PKKD ANN [2] 68.8% 88.6%
ResNet-50 CNN 76.2% 92.9%
ANN 74.9% 91.7%
PKKD ANN 76.8% 93.3%

Super-Resolution results on several SR datasets.

Scale Model Method Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) B100 (PSNR/SSIM) Urban100 (PSNR/SSIM)
×2 VDSR CNN 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
ANN [4] 37.37/0.9575 32.91/0.9112 31.82/0.8947 30.48/0.9099
EDSR CNN 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351
ANN 37.92/0.9589 33.82/0.9183 32.23/0.9000 32.63/0.9309
×3 VDSR CNN 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
ANN 33.47/0.9151 29.62/0.8276 28.72/0.7953 26.95/0.8189
EDSR CNN 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653
ANN 34.35/0.9212 30.33/0.8420 29.13/0.8068 28.54/0.8555
×4 VDSR CNN 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
ANN 31.27/0.8762 27.93/0.7630 27.25/0.7229 25.09/0.7445
EDSR CNN 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
ANN 32.13/0.8864 28.57/0.7800 27.58/0.7368 26.33/0.7874

*ShiftAddNet [3] used different training setting.

[1] AdderNet: Do We Really Need Multiplications in Deep Learning? Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu. CVPR, 2020. (Oral)

[2] Kernel Based Progressive Distillation for Adder Neural Networks. Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing XU, Yunhe Wang. NeurIPS, 2020. (Spotlight)

[3] ShiftAddNet: A Hardware-Inspired Deep Network. Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin. NeurIPS, 2020.

[4] AdderSR: Towards Energy Efficient Image Super-Resolution. Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao. Arxiv, 2020.

Requirements

  • python 3
  • pytorch >= 1.1.0
  • torchvision

Preparation

You can follow pytorch/examples to prepare the ImageNet data.

The pretrained models are available in google drive or baidu cloud (access code:126b)

Usage

Run python main.py to train on CIFAR-10.

Run python test.py --data_dir 'path/to/imagenet_root/' to evaluate on ImageNet val set. You will achieve 74.9% Top accuracy and 91.7% Top-5 accuracy on the ImageNet dataset using ResNet-50.

Run python test.py --dataset cifar10 --model_dir models/ResNet20-AdderNet.pth --data_dir 'path/to/cifar10_root/' to evaluate on CIFAR-10. You will achieve 91.8% accuracy on the CIFAR-10 dataset using ResNet-20.

The inference and training of AdderNets is slow since the adder filters is implemented without cuda acceleration. You can write cuda to achieve higher inference speed.

Citation

@article{AdderNet,
	title={AdderNet: Do We Really Need Multiplications in Deep Learning?},
	author={Chen, Hanting and Wang, Yunhe and Xu, Chunjing and Shi, Boxin and Xu, Chao and Tian, Qi and Xu, Chang},
	journal={CVPR},
	year={2020}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR, because we might be taking the core in a different direction than you might be aware of.

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023