Trustworthy AI related projects

Overview

Trustworthy AI

This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab.
Current projects include:

Causal Structure Learning

  • Causal_Discovery_RL: code, datasets, and training logs of the experimental results for the paper 'Causal discovery with reinforcement learning', ICLR, 2020. (oral)
  • GAE_Causal_Structure_Learning: an implementation for 'A graph autoencoder approach to causal structure learning', NeurIPS Causal Machine Learning Workshop, 2019.
  • Datasets:
    • Synthetic datasets: codes for generating synthetic datasets used in the paper.
    • Real datasets: a very challenging real dataset where the objective is to find causal structures based on time series data. The true graph is obtained from expert knowledge. We welcome everyone to try this dataset and report the result!
  • We will also release the codes for other gradient-based causal structure learning methods.

Causal Disentangled Representation Learning

gCastle

  • This is a causal structure learning toolchain, which contains various functionality related to causal learning and evaluation.
  • Most of causal discovery algorithms in gCastle are gradient-based, hence the name: gradient-based Causal Structure Learning pipeline.
Comments
  • Detailed questions about CausalVAE intervention

    Detailed questions about CausalVAE intervention

    Hello, how did CausalVAE intervention operation? In the published source code, intervention is to forcibly assign a concept to a fixed integer by using "mask_z", as follows:

    z_mask = torch.ones(q_m.size()[0], self.z1_dim, self.z2_dim).to(device) * adj       
    decode_m[:, mask, :] = z_mask[:, mask, :]                       
    decode_v[:, mask, :] = z_mask[:, mask, :]    
    

    In the test result, the result is very poor. Where did I make a mistake?

    The original input image is this true_0

    Output image with intervention of 1 for the 0th concept reconstructed_image_0_0

    Should I modify the published code to achieve the effect in the paper?

    opened by EternityZY 8
  • Can't successfully install CAM package

    Can't successfully install CAM package

    I download the CAM_1.0.tar.gz and run the setup_CAM.py, but when check if CAM and mboost have been installed, get 'need to install CAM and mboost'. I can't install CAM successfully. image

    opened by smile0925 7
  • Questions about CausalVAE

    Questions about CausalVAE

    In CausalVAE code Is there any special reason why using 4 different decoders?

    Besides, for pendulum and flow datasets, the latent space dimension should be equal to the dimension of the label, which is 4. Why the latent space dimension in code is set to be 16?

    I checked the Appendix of the paper: we extend the multivariate Gaussian to the matrix Gaussian. Why the model is designed in this way and what are the advantages if we set the VAE in this way?

    Many thanks for your response

    opened by akdadewrwr 6
  • CAUSAL DISCOVERY WITH REINFORCEMENT LEARNING

    CAUSAL DISCOVERY WITH REINFORCEMENT LEARNING

    On the synthetic dataset, there is no error in the execution result. On the sachs dataset, the code error is as follows: Traceback (most recent call last): File "main.py", line 314, in main() File "main.py", line 284, in main graph_batch_pruned = np.transpose(pruning_cam(training_set.inputdata, np.array(graph_batch).T)) File "D:\code\trustworthyAI-master\Causal_Structure_Learning\Causal_Discovery_RL\src\helpers\cam_with_pruning_cam.py", line 129, in pruning_cam X2 = numpy2ri.py2rpy(XX) AttributeError: module 'rpy2.robjects.numpy2ri' has no attribute 'py2rpy' Please help me how to solve this problem?

    opened by cczhangy 5
  • 《CAUSAL DISCOVERY WITH REINFORCEMENT LEARNING》

    《CAUSAL DISCOVERY WITH REINFORCEMENT LEARNING》

    When experimenting with the real dataset Sachs, the real dataset has been downloaded from the website, should I get the DAG.npy and data.npy of the real dataset?

    opened by cczhangy 5
  • HPCI Implementation

    HPCI Implementation

    Hi,

    First of all, thank you for all your work on this package, collecting together the distributed (and sometimes un-implemented) research on causal inference is infinitely helpful and useful.

    I was just wondering if you had any rough ETA on the implementation of the HPC algorithm within your toolbox? The results of this paper look extremely promising and I would like to test them further.

    Many thanks

    opened by gwinch97 4
  • [Feature request]: Adding GES algorithm to the package

    [Feature request]: Adding GES algorithm to the package

    Hi,

    I think it would be great to add GES algorithm implementation to gcastle. It would make broad comparisons between algorithms easier.

    There is an existing Python implementation of GES by Juan Gamella: https://github.com/juangamella/ges

    Maybe it could be integrated into gcastle. What are your thoughts?

    If you think it's a good idea, I am happy to help with the integration.

    BTW., I'll be speaking about gcastle in my upcoming conference talk next week: https://ghostday.pl/#agenda

    opened by AlxndrMlk 4
  • No module named 'castle' after installed the gcastle == 1.0.3rc2

    No module named 'castle' after installed the gcastle == 1.0.3rc2

    Hi I already installed gcastle with pip install gcastle==1.0.3rc2. But when I try to run the demo program like anm_demo.py. There still an error said from castle.common import GraphDAG ModuleNotFoundError: No module named 'castle'

    Anyone know why there is a ModuleNotFoundError even I have installed the package already?

    opened by matthewmeng 4
  • Bump tensorflow from 1.13.1 to 2.5.1 in /Causal_Structure_Learning/GAE_Causal_Structure_Learning

    Bump tensorflow from 1.13.1 to 2.5.1 in /Causal_Structure_Learning/GAE_Causal_Structure_Learning

    Bumps tensorflow from 1.13.1 to 2.5.1.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse (CVE-2021-37656)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixDiagV* ops (CVE-2021-37657)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixSetDiagV* ops (CVE-2021-37658)
    • Fixes an undefined behavior arising from reference binding to nullptr and heap OOB in binary cwise ops (CVE-2021-37659)
    • Fixes a division by 0 in inplace operations (CVE-2021-37660)
    • Fixes a crash caused by integer conversion to unsigned (CVE-2021-37661)
    • Fixes an undefined behavior arising from reference binding to nullptr in boosted trees (CVE-2021-37662)
    • Fixes a heap OOB in boosted trees (CVE-2021-37664)
    • Fixes vulnerabilities arising from incomplete validation in QuantizeV2 (CVE-2021-37663)
    • Fixes vulnerabilities arising from incomplete validation in MKL requantization (CVE-2021-37665)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToVariant (CVE-2021-37666)
    • Fixes an undefined behavior arising from reference binding to nullptr in unicode encoding (CVE-2021-37667)
    • Fixes an FPE in tf.raw_ops.UnravelIndex (CVE-2021-37668)
    • Fixes a crash in NMS ops caused by integer conversion to unsigned (CVE-2021-37669)
    • Fixes a heap OOB in UpperBound and LowerBound (CVE-2021-37670)
    • Fixes an undefined behavior arising from reference binding to nullptr in map operations (CVE-2021-37671)
    • Fixes a heap OOB in SdcaOptimizerV2 (CVE-2021-37672)
    • Fixes a CHECK-fail in MapStage (CVE-2021-37673)
    • Fixes a vulnerability arising from incomplete validation in MaxPoolGrad (CVE-2021-37674)
    • Fixes an undefined behavior arising from reference binding to nullptr in shape inference (CVE-2021-37676)
    • Fixes a division by 0 in most convolution operators (CVE-2021-37675)
    • Fixes vulnerabilities arising from missing validation in shape inference for Dequantize (CVE-2021-37677)
    • Fixes an arbitrary code execution due to YAML deserialization (CVE-2021-37678)
    • Fixes a heap OOB in nested tf.map_fn with RaggedTensors (CVE-2021-37679)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse

    ... (truncated)

    Commits
    • 8222c1c Merge pull request #51381 from tensorflow/mm-fix-r2.5-build
    • d584260 Disable broken/flaky test
    • f6c6ce3 Merge pull request #51367 from tensorflow-jenkins/version-numbers-2.5.1-17468
    • 3ca7812 Update version numbers to 2.5.1
    • 4fdf683 Merge pull request #51361 from tensorflow/mm-update-relnotes-on-r2.5
    • 05fc01a Put CVE numbers for fixes in parentheses
    • bee1dc4 Update release notes for the new patch release
    • 47beb4c Merge pull request #50597 from kruglov-dmitry/v2.5.0-sync-abseil-cmake-bazel
    • 6f39597 Merge pull request #49383 from ashahab/abin-load-segfault-r2.5
    • 0539b34 Merge pull request #48979 from liufengdb/r2.5-cherrypick
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 4
  • Experimental performance problem on exp3(GPR simulate data)

    Experimental performance problem on exp3(GPR simulate data)

    Hello! Thank you for the the implementation of the method proposed in paper published in ICLR2020. I have some questions when reproducing the experimental results.

    Our commands is the same as the 'exp3' in README.md . And the data we used comes from 'https://github.com/kurowasan/GraN-DAG/blob/master/data/data_p10_e40_n1000_GP.zip', which should be the same as yours. But the performance is less than the results presented in the paper.

    I'd appreciate it if you could tell me where the problem is.Thanks~

    # Our command:
    python main.py --max_length 10 --data_size 1000 --score_type BIC --reg_type GPR --read_data  --normalize --data_path ./data/data_p10_e40_n1000_GP_seed1 --lambda_flag_default --nb_epoch 20000 --input_dimension 128 --lambda_iter_num 1000
    
    # training log:
    2020-09-22 02:54:35,182 INFO - __main__ - [iter 18000] reward_batch: -4.175537586212158, max_reward: -3.6388002559621855, max_reward_batch: -3.7585916127016294
    2020-09-22 02:56:12,809 INFO - __main__ - [iter 18500] reward_batch: -4.152896881103516, max_reward: -3.6388002559621855, max_reward_batch: -3.823972058605565
    2020-09-22 02:58:37,596 INFO - __main__ - [iter 19000] lambda1 3.6388002559621855, upper 3.6388002559621855, lambda2 0.01, upper 0.01, score_min 3.6388002559621855, cyc_min 0.0
    2020-09-22 02:58:40,635 INFO - __main__ - before pruning: fdr 0.7727272727272727, tpr 0.2564102564102564, fpr 5.666666666666667, shd 35, nnz 44
    2020-09-22 02:58:40,636 INFO - __main__ - after  pruning: fdr 0.84375, tpr 0.1282051282051282, fpr 4.5, shd 37, nnz 32
    2020-09-22 02:58:40,806 INFO - __main__ - [iter 19000] reward_batch: -4.204100608825684, max_reward: -3.6388002559621855, max_reward_batch: -3.7716216965236127
    2020-09-22 03:00:17,209 INFO - __main__ - [iter 19500] reward_batch: -4.158496856689453, max_reward: -3.6388002559621855, max_reward_batch: -3.8702693792409377
    2020-09-22 03:02:40,728 INFO - __main__ - [iter 20000] lambda1 3.6388002559621855, upper 3.6388002559621855, lambda2 0.01, upper 0.01, score_min 3.6388002559621855, cyc_min 0.0
    2020-09-22 03:02:43,523 INFO - __main__ - before pruning: fdr 0.7727272727272727, tpr 0.2564102564102564, fpr 5.666666666666667, shd 35, nnz 44
    2020-09-22 03:02:43,523 INFO - __main__ - after  pruning: fdr 0.84375, tpr 0.1282051282051282, fpr 4.5, shd 37, nnz 32
    2020-09-22 03:02:43,733 INFO - __main__ - [iter 20000] reward_batch: -4.166861534118652, max_reward: -3.6388002559621855, max_reward_batch: -3.723014876623765
    2020-09-22 03:02:45,956 INFO - __main__ - Model saved in file: output/2020-09-22_00-52-32-724/model/tmp.ckpt-20000
    2020-09-22 03:02:45,957 INFO - __main__ - Training COMPLETED !
    
    opened by pp-payphone 4
  • self.loss1 = tf.reduce_mean(self.reward_baseline * self.log_softmax, 0) - 1 * self.lr1 * tf.reduce_mean(self.entropy_regularization, 0)

    self.loss1 = tf.reduce_mean(self.reward_baseline * self.log_softmax, 0) - 1 * self.lr1 * tf.reduce_mean(self.entropy_regularization, 0)

    Hello! I have read all of your code and the great paper published in ICLR2020. I have some questions about the code: 1 . in train step1, why the loss1 of the actor has to be: self.loss1 = tf.reduce_mean(self.reward_baseline * self.log_softmax, 0) - 1 * self.lr1 * tf.reduce_mean(self.entropy_regularization, 0) i didn't find any formula or explanation in the paper. 2. What does reward base line in this code use for? I would be appreciated if you can answer these questions.

    opened by Foyn 4
  • Adding NPVAR algorithm to the package

    Adding NPVAR algorithm to the package

    opened by AlxndrMlk 4
  • task of data generation

    task of data generation

    Hi. When I use the GUI web for the task of data generation. I found that the edges in the graph are not equal to those in the configuration parameters. When I change the seed while keeping the n_nodes and n_edges identical, the edges in the graph may also be changed. So What's the effect of seed? Thanks.

    opened by sususnow 1
  • error in convert_graph_int_to_adj_mat

    error in convert_graph_int_to_adj_mat

    Hello,

    I am trying to use Causal Disocvery RL on bnlearn benchmarks. I encounter the error in convert_graph_int_to_adj_mat function.

    The input to this function is

    [-1903318164   235405414   101482606   495790951   201853294   378349935
     -1634426101 -1718146065   134742090          64   134742086   134742084
       446475107   470616428 -1785775892 -1768316434   201884524   134217728
       201949548 -1903613075   470286702   101187694 -1734505621   503843118
     -2070074547   134217838   513518542   503875886   235405386   445754223
               0      524358   236432367   134742086   134217792   134217792
       503908622]
    

    And the error message follows:

    Traceback (most recent call last):
      File "main.py", line 337, in <module>
        main()
      File "main.py", line 285, in main
        graph_batch = convert_graph_int_to_adj_mat(graph_int)
      File "/home/user/Causal_Discovery_RL/src/helpers/analyze_utils.py", line 156, in convert_graph_int_to_adj_mat
        for curr_int in graph_int], dtype=int)
      File "/home/user/Causal_Discovery_RL/src/helpers/analyze_utils.py", line 156, in <listcomp>
        for curr_int in graph_int], dtype=int)
    ValueError: invalid literal for int() with base 10: '-'
    
    opened by pckennethma 7
Releases(1.0.1)
Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023