Block Sparse movement pruning

Overview

Movement Pruning: Adaptive Sparsity by Fine-Tuning

Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; however, it is less effective in the transfer learning regime that has become standard for state-of-the-art natural language processing applications. We propose the use of movement pruning, a simple, deterministic first-order weight pruning method that is more adaptive to pretrained model fine-tuning. Experiments show that when pruning large pretrained language models, movement pruning shows significant improvements in high-sparsity regimes. When combined with distillation, the approach achieves minimal accuracy loss with down to only 3% of the model parameters:

Fine-pruning+Distillation
(Teacher=BERT-base fine-tuned)
BERT base
fine-tuned
Remaining
Weights (%)
Magnitude Pruning L0 Regularization Movement Pruning Soft Movement Pruning
SQuAD - Dev
EM/F1
80.4/88.1 10%
3%
70.2/80.1
45.5/59.6
72.4/81.9
64.3/75.8
75.6/84.3
67.5/78.0
76.6/84.9
72.7/82.3
MNLI - Dev
acc/MM acc
84.5/84.9 10%
3%
78.3/79.3
69.4/70.6
78.7/79.7
76.0/76.2
80.1/80.4
76.5/77.4
81.2/81.8
79.5/80.1
QQP - Dev
acc/F1
91.4/88.4 10%
3%
79.8/65.0
72.4/57.8
88.1/82.8
87.0/81.9
89.7/86.2
86.1/81.5
90.2/86.8
89.1/85.5

This page contains information on how to fine-prune pre-trained models such as BERT to obtain extremely sparse models with movement pruning. In contrast to magnitude pruning which selects weights that are far from 0, movement pruning retains weights that are moving away from 0.

For more information, we invite you to check out our paper. You can also have a look at this fun Explain Like I'm Five introductory slide deck.

Extreme sparsity and efficient storage

One promise of extreme pruning is to obtain extremely small models that can be easily sent (and stored) on edge devices. By setting weights to 0., we reduce the amount of information we need to store, and thus decreasing the memory size. We are able to obtain extremely sparse fine-pruned models with movement pruning: ~95% of the dense performance with ~5% of total remaining weights in the BERT encoder.

In this notebook, we showcase how we can leverage standard tools that exist out-of-the-box to efficiently store an extremely sparse question answering model (only 6% of total remaining weights in the encoder). We are able to reduce the memory size of the encoder from the 340MB (the orignal dense BERT) to 11MB, without any additional training of the model (every operation is performed post fine-pruning). It is sufficiently small to store it on a 91' floppy disk 📎 !

While movement pruning does not directly optimize for memory footprint (but rather the number of non-null weights), we hypothetize that further memory compression ratios can be achieved with specific quantization aware trainings (see for instance Q8BERT, And the Bit Goes Down or Quant-Noise).

Fine-pruned models

As examples, we release two English PruneBERT checkpoints (models fine-pruned from a pre-trained BERT checkpoint), one on SQuAD and the other on MNLI.

  • prunebert-base-uncased-6-finepruned-w-distil-squad
    Pre-trained BERT-base-uncased fine-pruned with soft movement pruning on SQuAD v1.1. We use an additional distillation signal from BERT-base-uncased finetuned on SQuAD. The encoder counts 6% of total non-null weights and reaches 83.8 F1 score. The model can be accessed with: pruned_bert = BertForQuestionAnswering.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad")
  • prunebert-base-uncased-6-finepruned-w-distil-mnli
    Pre-trained BERT-base-uncased fine-pruned with soft movement pruning on MNLI. We use an additional distillation signal from BERT-base-uncased finetuned on MNLI. The encoder counts 6% of total non-null weights and reaches 80.7 (matched) accuracy. The model can be accessed with: pruned_bert = BertForSequenceClassification.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli")

How to fine-prune?

Setup

The code relies on the 🤗 Transformers library. In addition to the dependencies listed in the examples folder, you should install a few additional dependencies listed in the requirements.txt file: pip install -r requirements.txt.

Note that we built our experiments on top of a stabilized version of the library (commit https://github.com/huggingface/transformers/commit/352d5472b0c1dec0f420d606d16747d851b4bda8): we do not guarantee that everything is still compatible with the latest version of the master branch.

Fine-pruning with movement pruning

Below, we detail how to reproduce the results reported in the paper. We use SQuAD as a running example. Commands (and scripts) can be easily adapted for other tasks.

The following command fine-prunes a pre-trained BERT-base on SQuAD using movement pruning towards 15% of remaining weights (85% sparsity). Note that we freeze all the embeddings modules (from their pre-trained value) and only prune the Fully Connected layers in the encoder (12 layers of Transformer Block).

SERIALIZATION_DIR=<OUTPUT_DIR>
SQUAD_DATA=squad_data

mkdir $SQUAD_DATA
cd $SQUAD_DATA
wget -q https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
wget -q https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json
cd ..


python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \
    --initial_threshold 1 --final_threshold 0.15 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method topK --mask_init constant --mask_scale 0.

Fine-pruning with other methods

We can also explore other fine-pruning methods by changing the pruning_method parameter:

Soft movement pruning

python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \
    --initial_threshold 0 --final_threshold 0.1 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method sigmoied_threshold --mask_init constant --mask_scale 0. \
    --regularization l1 --final_lambda 400.

L0 regularization

python examples/movement-pruning/masked_run_squad.py \
    --output_dir $SERIALIZATION_DIR \
    --data_dir $SQUAD_DATA \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 --mask_scores_learning_rate 1e-1 \
    --initial_threshold 1. --final_threshold 1. \
    --initial_warmup 1 --final_warmup 1 \
    --pruning_method l0 --mask_init constant --mask_scale 2.197 \
    --regularization l0 --final_lambda 125.

Iterative Magnitude Pruning

python examples/movement-pruning/masked_run_squad.py \
    --output_dir ./dbg \
    --data_dir examples/distillation/data/squad_data \
    --train_file train-v1.1.json \
    --predict_file dev-v1.1.json \
    --do_train --do_eval --do_lower_case \
    --model_type masked_bert \
    --model_name_or_path bert-base-uncased \
    --per_gpu_train_batch_size 16 \
    --warmup_steps 5400 \
    --num_train_epochs 10 \
    --learning_rate 3e-5 \
    --initial_threshold 1 --final_threshold 0.15 \
    --initial_warmup 1 --final_warmup 2 \
    --pruning_method magnitude

After fine-pruning

Counting parameters

Regularization based pruning methods (soft movement pruning and L0 regularization) rely on the penalty to induce sparsity. The multiplicative coefficient controls the sparsity level. To obtain the effective sparsity level in the encoder, we simply count the number of activated (non-null) weights:

python examples/movement-pruning/counts_parameters.py \
    --pruning_method sigmoied_threshold \
    --threshold 0.1 \
    --serialization_dir $SERIALIZATION_DIR

Pruning once for all

Once the model has been fine-pruned, the pruned weights can be set to 0. once for all (reducing the amount of information to store). In our running experiments, we can convert a MaskedBertForQuestionAnswering (a BERT model augmented to enable on-the-fly pruning capabilities) to a standard BertForQuestionAnswering:

python examples/movement-pruning/bertarize.py \
    --pruning_method sigmoied_threshold \
    --threshold 0.1 \
    --model_name_or_path $SERIALIZATION_DIR

Hyper-parameters

For reproducibility purposes, we share the detailed results presented in the paper. These tables exhaustively describe the individual hyper-parameters used for each data point.

Inference speed

Early experiments show that even though models fine-pruned with (soft) movement pruning are extremely sparse, they do not benefit from significant improvement in terms of inference speed when using the standard PyTorch inference. We are currently benchmarking and exploring inference setups specifically for sparse architectures. In particular, hardware manufacturers are announcing devices that will speedup inference for sparse networks considerably.

Citation

If you find this resource useful, please consider citing the following paper:

@article{sanh2020movement,
    title={Movement Pruning: Adaptive Sparsity by Fine-Tuning},
    author={Victor Sanh and Thomas Wolf and Alexander M. Rush},
    year={2020},
    eprint={2005.07683},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Hugging Face
Solving NLP, one commit at a time!
Hugging Face
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022