A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

Overview

A PyTorch Reproduction of HCN

Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu, IJCAI 2018.

Arxiv Preprint

Features

1. Dataset

  • NTU RGB+D: Cross View (CV), Cross Subject (CS)
  • SBU Kinect Interaction
  • PKU-MMD

2. Tasks

  • Action recognition
  • Action detection

3. Visualization

  • Visdom supported.

Prerequisites

Our code is based on Python3.5. There are a few dependencies to run the code in the following:

  • Python >= 3.5
  • PyTorch == 0.4.0
  • torchnet
  • Visdom
  • Other version info about some Python packages can be found in requirements.txt

Usage

Data preparation

NTU RGB+D

To transform raw NTU RGB+D data into numpy array (memmap format ) by this command:

python ./feeder/ntu_gendata.py --data_path <path for raw skeleton dataset> --out_folder <path for new dataset>
Other Datasets

Not supported now.

Training

Before you start the training, you have to launch visdom server.

python -m visdom

To train the model, you should note that:

  • --dataset_dir is the parents path for all the datasets,
  • --num the number of experiments trials (type: list).
python main.py --dataset_dir <parents path for all the datasets> --mode train --model_name HCN --dataset_name NTU-RGB-D-CV --num 01

To run a new trial with different parameters, you need to:

  • Firstly, run the above training command with a new trial number, e.g, --num 03, thus you will got an error.
  • Secondly, copy a parameters file from the ./HCN/experiments/NTU-RGB-D-CV/HCN01/params.json to the path of your new trial "./HCN/experiments/NTU-RGB-D-CV/HCN03/params.json" and modify it as you want.
  • At last, run the above training command again, it will works.

Testing

python main.py --dataset_dir <parents path for all the datasets> --mode test --load True --model_name HCN --dataset_name NTU-RGB-D-CV --num 01

Load and Training

You also can load a half trained model, and start training it from a specific checkpoint by the following command:

python main.py --dataset_dir <parents path for all the datasets> --mode load_train --load True --model_name HCN --dataset_name NTU-RGB-D-CV --num 01 --load_model <path for  trained model>

Results

Table

The expected Top-1 accuracy of the model for NTU-RGD+D are shown here (There is an accuracy gap. I am not the author of original HCN paper, the repo was reproduced according to the paper text and have not been tuned carefully):

Model Normalized
Sequence
Length
FC
Neuron
Numbers
NTU RGB+D
Cross Subject (%)
NTU RGB+D
Cross View (%)
HCN[1] 32 256 86.5 91.1
HCN 32 256 84.2 89.2
HCN 64 512 84.9* 90.9*

[1] http://arxiv.org/pdf/1804.06055.pdf

Figures

  • Loss & accuracy[CV]

Confusion matrix

- Loss & accuracy[CS]

Reference

[1] Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu. Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. IJCAI 2018.

[2] yysijie/st-gcn: referred for some code of dataset processing.

Owner
Guyue Hu
Guyue Hu
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022