Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Overview

logo

Pypi version Python3 version MIT License total stats download stats / month discord


Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Documentation

Proper documentation is available at https://malaya-speech.readthedocs.io/

Installing from the PyPI

CPU version

$ pip install malaya-speech

GPU version

$ pip install malaya-speech[gpu]

Only Python 3.6.0 and above and Tensorflow 1.15.0 and above are supported.

We recommend to use virtualenv for development. All examples tested on Tensorflow version 1.15.4, 1.15.5, 2.4.1 and 2.5.

Features

  • Age Detection, detect age in speech using Finetuned Speaker Vector.
  • Speaker Diarization, diarizing speakers using Pretrained Speaker Vector.
  • Emotion Detection, detect emotions in speech using Finetuned Speaker Vector.
  • Force Alignment, generate a time-aligned transcription of an audio file using RNNT.
  • Gender Detection, detect genders in speech using Finetuned Speaker Vector.
  • Language Detection, detect hyperlocal languages in speech using Finetuned Speaker Vector.
  • Multispeaker Separation, Multispeaker separation using FastSep on 8k Wav.
  • Noise Reduction, reduce multilevel noises using STFT UNET.
  • Speaker Change, detect changing speakers using Finetuned Speaker Vector.
  • Speaker overlap, detect overlap speakers using Finetuned Speaker Vector.
  • Speaker Vector, calculate similarity between speakers using Pretrained Speaker Vector.
  • Speech Enhancement, enhance voice activities using Waveform UNET.
  • SpeechSplit Conversion, detailed speaking style conversion by disentangling speech into content, timbre, rhythm and pitch using PyWorld and PySPTK.
  • Speech-to-Text, End-to-End Speech to Text for Malay, Mixed (Malay, Singlish and Mandarin) and Singlish using RNNT and Wav2Vec2 CTC.
  • Super Resolution, Super Resolution 4x for Waveform.
  • Text-to-Speech, Text to Speech for Malay and Singlish using Tacotron2, FastSpeech2 and FastPitch.
  • Vocoder, convert Mel to Waveform using MelGAN, Multiband MelGAN and Universal MelGAN Vocoder.
  • Voice Activity Detection, detect voice activities using Finetuned Speaker Vector.
  • Voice Conversion, Many-to-One, One-to-Many, Many-to-Many, and Zero-shot Voice Conversion.
  • Hybrid 8-bit Quantization, provide hybrid 8-bit quantization for all models to reduce inference time up to 2x and model size up to 4x.

Pretrained Models

Malaya-Speech also released pretrained models, simply check at malaya-speech/pretrained-model

References

If you use our software for research, please cite:

@misc{Malaya, Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow,
  author = {Husein, Zolkepli},
  title = {Malaya-Speech},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huseinzol05/malaya-speech}}
}

Acknowledgement

Thanks to KeyReply for sponsoring private cloud to train Malaya-Speech models, without it, this library will collapse entirely.

logo
You might also like...
ExKaldi-RT: An Online Speech Recognition Extension Toolkit of Kaldi

ExKaldi-RT is an online ASR toolkit for Python language. It reads realtime streaming audio and do online feature extraction, probability computation, and online decoding.

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

Releases(1.3.0)
  • 1.3.0(Sep 18, 2022)

    1. Added GPT2 LM combined with pyctcdecoder, https://malaya-speech.readthedocs.io/en/latest/gpt2-lm.html
    2. Added Mask LM combined with pyctcdecoder, https://malaya-speech.readthedocs.io/en/latest/masked-lm.html
    3. Added Transducer with GPT2 LM beam decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm-gpt2.html
    4. Added Transducer with Mask LM beam decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm-gpt2.html
    5. Added GPT2 LM CTC decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode-gpt2.html
    6. Added Mask LM CTC decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode-mlm.html
    7. Added Squeezeformer transducer models.
    8. Added End-to-End FastSpeech2 STT models, no longer required a vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-e2e-fastspeech2.html
    9. Added End-to-End VITS STT models, no longer required a vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-vits.html
    10. Added Neural Vocoder Super Resolution models, https://malaya-speech.readthedocs.io/en/latest/load-super-resolution-tfgan.html
    11. Added super resolution diffusion models, https://malaya-speech.readthedocs.io/en/latest/load-super-resolution-audio-diffusion.html
    12. Added HMM speaker diarization, https://malaya-speech.readthedocs.io/en/latest/load-diarization-clustering-hmm.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2.7(Jun 13, 2022)

    1. Added Speech-to-Text HuggingFace using Mesolitica finetuned models, https://huggingface.co/mesolitica, https://malaya-speech.readthedocs.io/en/latest/stt-huggingface.html
    2. Added Force Alignment HuggingFace using Mesolitica finetuned models, https://huggingface.co/mesolitica, https://malaya-speech.readthedocs.io/en/latest/stt-huggingface.html
    3. Added Text-to-Speech LightSpeech, https://arxiv.org/abs/2102.04040, https://malaya-speech.readthedocs.io/en/latest/tts-lightspeech-model.html
    4. Now Transducer LM support multi-languages.
    Source code(tar.gz)
    Source code(zip)
  • 1.2.6(May 6, 2022)

    1. Use HuggingFace as backend repository.
    2. Added yasmin and osman speakers for TTS Tacotron2, https://malaya-speech.readthedocs.io/en/latest/tts-tacotron2-model.html
    3. Added yasmin and osman speakers for TTS FastSpeech2, https://malaya-speech.readthedocs.io/en/latest/tts-fastspeech2-model.html
    4. Added yasmin and osman speakers for TTS GlowTTS, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-model.html
    5. Use yasmin and osman speakers for long text TTS, https://malaya-speech.readthedocs.io/en/latest/tts-long-text.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2.5(Mar 20, 2022)

  • 1.2.4(Mar 1, 2022)

    1. Added malay language pretrained BEST-RQ models, https://github.com/huseinzol05/malaya-speech/tree/master/pretrained-model/stt/best_rq
    2. Added BEST-RQ STT, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html#List-available-CTC-model
    Source code(tar.gz)
    Source code(zip)
  • 1.2.2(Dec 29, 2021)

  • 1.2.1(Dec 2, 2021)

    1. Added more KenLM models, included Malay + Singlish, https://malaya-speech.readthedocs.io/en/latest/ctc-language-model.html
    2. Improved ASR CTC models, Hubert-Conformer-Large achieved 12.8% WER-LM, 3.8% CER-LM, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html
    3. Added CTC Decoders interface for ASR CTC models, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-ctc-decoders.html
    4. Added pyctcdecode interface for ASR CTC models, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode.html
    5. Improved ASR RNNT models, large-conformer achieved 14.8% WER-LM, 5.9% CER-LM, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model.html
    6. Added KenLM support for ASR RNNT models, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm.html
    7. Added ASR RNNT for 2 mixed languages, Malay and Singlish, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm.html#
    8. Added ASR RNNT for 3 mixed languages, Malay, Singlish and Mandarin, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-3mixed.html
    9. Added GlowTTS Text-to-Speech, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-model.html
    10. Added GlowTTS Text-to-Speech Multispeakers, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-multispeaker-model.html
    11. Added HiFiGAN Vocoder, https://malaya-speech.readthedocs.io/en/latest/load-vocoder.html
    12. Added Universal HiFiGAN Vocoder, https://malaya-speech.readthedocs.io/en/latest/load-universal-hifigan.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2(Oct 2, 2021)

    1. Added HuBERT, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html, new SOTA on Malay CER.
    2. Improved Singlish TTS model, now supported Universal MelGAN as vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-singlish.html
    3. Added Force Alignment module, now you can generate a time-aligned for your transcription, https://malaya-speech.readthedocs.io/en/latest/force-alignment.html
    4. Improved Mixed STT Transducer models, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-mixed.html
    5. Add new Mixed STT SOTA models, called conformer-stack-mixed, 2% better than other Mixed STT models, no paper produced, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-mixed.html#List-available-RNNT-model
    6. Add Singlish STT Transducer models, thanks to Singapore National Speech Corpus for the dataset, https://www.imda.gov.sg/programme-listing/digital-services-lab/national-speech-corpus, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-singlish.html
    Source code(tar.gz)
    Source code(zip)
  • 1.1.1(Jun 29, 2021)

    1. Improved Bahasa Speech-to-Text, Large Conformer beat Google Speech-to-Text accuracy.
    2. Improved Mixed (malay and singlish) Speech-to-Text.
    3. Added real time Mixed (malay and singlish) Speech-to-Text documentation, https://malaya-speech.readthedocs.io/en/latest/realtime-asr-mixed.html
    Source code(tar.gz)
    Source code(zip)
  • 1.1(Jun 1, 2021)

  • 1.0(Apr 18, 2021)

Owner
HUSEIN ZOLKEPLI
I really love to fart and korek hidung.
HUSEIN ZOLKEPLI
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022