Collection of generative models in Tensorflow

Overview

tensorflow-generative-model-collections

Tensorflow implementation of various GANs and VAEs.

Related Repositories

Pytorch version

Pytorch version of this repository is availabel at https://github.com/znxlwm/pytorch-generative-model-collections

"Are GANs Created Equal? A Large-Scale Study" Paper

https://github.com/google/compare_gan is the code that was used in the paper.
It provides IS/FID and rich experimental results for all gan-variants.

Generative Adversarial Networks (GANs)

Lists

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN_GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type 
   
     --epoch 25 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 2 Epoch 10 Epoch 25
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type 
   
     --epoch 40 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CGAN
ACGAN
infoGAN

Without hyper-parameter tuning from mnist-version, ACGAN/infoGAN does not work well as compared with CGAN.
ACGAN tends to fall into mode-collapse.
infoGAN tends to ignore noise-vector. It results in that various style within the same class can not be represented.

InfoGAN : Manipulating two continous codes

Some results for celebA

(to be added)

Variational Auto-Encoders (VAEs)

Lists

Name Paper Link Loss Function
VAE Arxiv
CVAE Arxiv
DVAE Arxiv (to be added)
AAE Arxiv (to be added)

Variants of VAE structure

Results for mnist

Network architecture of decoder(generator) and encoder(discriminator) is the exaclty sames as in infoGAN paper. The number of output nodes in encoder is different. (2x z_dim for VAE, 1 for GAN)

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type 
   
     --epoch 25 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 10 Epoch 25
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN. The main difference (VAE generates smooth and blurry images, otherwise GAN generates sharp and artifact images) is cleary observed from the results.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type 
   
     --epoch 40 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE

Results for celebA

(to be added)

Folder structure

The following shows basic folder structure.

├── main.py # gateway
├── data
│   ├── mnist # mnist data (not included in this repo)
│   |   ├── t10k-images-idx3-ubyte.gz
│   |   ├── t10k-labels-idx1-ubyte.gz
│   |   ├── train-images-idx3-ubyte.gz
│   |   └── train-labels-idx1-ubyte.gz
│   └── fashion-mnist # fashion-mnist data (not included in this repo)
│       ├── t10k-images-idx3-ubyte.gz
│       ├── t10k-labels-idx1-ubyte.gz
│       ├── train-images-idx3-ubyte.gz
│       └── train-labels-idx1-ubyte.gz
├── GAN.py # vanilla GAN
├── ops.py # some operations on layer
├── utils.py # utils
├── logs # log files for tensorboard to be saved here
└── checkpoint # model files to be saved here

Acknowledgements

This implementation has been based on this repository and tested with Tensorflow over ver1.0 on Windows 10 and Ubuntu 14.04.

The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023