Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

Related tags

Deep Learningdsl
Overview

DSL

Project page: https://sites.google.com/view/dsl-ram-lab/

Monocular Direct Sparse Localization in a Prior 3D Surfel Map

Authors: Haoyang Ye, Huaiyang Huang, and Ming Liu from RAM-LAB.

Paper and Video

Related publications:

@inproceedings{ye2020monocular,
  title={Monocular direct sparse localization in a prior 3d surfel map},
  author={Ye, Haoyang and Huang, Huaiyang and Liu, Ming},
  booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={8892--8898},
  year={2020},
  organization={IEEE}
}
@inproceedings{ye20213d,
  title={3D Surfel Map-Aided Visual Relocalization with Learned Descriptors},
  author={Ye, Haoyang and Huang, Huaiyang and Hutter, Marco and Sandy, Timothy and Liu, Ming},
  booktitle={2021 International Conference on Robotics and Automation (ICRA)},
  pages={5574-5581},
  year={2021},
  organization={IEEE}
}

Video: https://www.youtube.com/watch?v=LTihCBGcURo

Dependency

  1. Pangolin.
  2. CUDA.
  3. Ceres-solver.
  4. PCL, the default version accompanying by ROS.
  5. OpenCV, the default version accompanying by ROS.

Build

  1. git submodule update --init --recursive
  2. mkdir build && cd build
  3. cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
  4. make -j8

Example

The sample config file can be downloaded from this link.

To run the example:

[path_to_build]/src/dsl_main --path "[path_to_dataset]/left_pinhole"

Preparing Your Own Data

  1. Collect LiDAR and camera data.
  2. Build LiDAR map and obtain LiDAR poses (the poses are not necessary).
  3. Pre-process LiDAR map to make the [path_to_dataset]/*.pcd map file contains normal_x, normal_y, normal_z fields (downsample & normal estimation).
  4. Extract and undistort images into [path_to_dataset]/images.
  5. Set the first camera pose to initial_pose and other camera parameters in [path_to_dataset]/config.yaml.

Note

This implementation of DSL takes Ceres Solver as backend, which is different from the the implementation of the original paper with DSO-backend. This leads to different performance, i.e., speed and accuracy, compared to the reported results.

Credits

This work is inspired from several open-source projects, such as DSO, DSM, Elastic-Fusion, SuperPoint, DBoW2, NetVlad, LIO-mapping and etc.

Licence

The source code is released under GPL-3.0.

Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022