SWA Object Detection

Overview

SWA Object Detection

This project hosts the scripts for training SWA object detectors, as presented in our paper:

@article{zhang2020swa,
  title={SWA Object Detection},
  author={Zhang, Haoyang and Wang, Ying and Dayoub, Feras and S{\"u}nderhauf, Niko},
  journal={arXiv preprint arXiv:2012.12645},
  year={2020}
}

The full paper is available at: https://arxiv.org/abs/2012.12645.

Introduction

Do you want to improve 1.0 AP for your object detector without any inference cost and any change to your detector? Let us tell you such a recipe. It is surprisingly simple: train your detector for an extra 12 epochs using cyclical learning rates and then average these 12 checkpoints as your final detection model. This potent recipe is inspired by Stochastic Weights Averaging (SWA), which is proposed in [1] for improving generalization in deep neural networks. We found it also very effective in object detection. In this work, we systematically investigate the effects of applying SWA to object detection as well as instance segmentation. Through extensive experiments, we discover a good policy of performing SWA in object detection, and we consistently achieve ~1.0 AP improvement over various popular detectors on the challenging COCO benchmark. We hope this work will make more researchers in object detection know this technique and help them train better object detectors.

SWA Object Detection: averaging multiple detection models leads to a better one.

Updates

  • 2020.01.08 Reimplement the code and now it is more convenient, more flexible and easier to perform both the conventional training and SWA training. See Instructions.
  • 2020.01.07 Update to MMDetection v2.8.0.
  • 2020.12.24 Release the code.

Installation

  • This project is based on MMDetection. Therefore the installation is the same as original MMDetection.

  • Please check get_started.md for installation. Note that you should change the version of PyTorch and CUDA to yours when installing mmcv in step 3 and clone this repo instead of MMdetection in step 4.

  • If you run into problems with pycocotools, please install it by:

    pip install "git+https://github.com/open-mmlab/cocoapi.git#subdirectory=pycocotools"
    

Usage of MMDetection

MMDetection provides colab tutorial, and full guidance for quick run with existing dataset and with new dataset for beginners. There are also tutorials for finetuning models, adding new dataset, designing data pipeline, customizing models, customizing runtime settings and useful tools.

Please refer to FAQ for frequently asked questions.

Instructions

We add a SWA training phase to the object detector training process, implement a SWA hook that helps process averaged models, and write a SWA config for conveniently deploying SWA training in training various detectors. We also provide many config files for reproducing the results in the paper.

By including the SWA config in detector config files and setting related parameters, you can have different SWA training modes.

  1. Two-pahse mode. In this mode, the training will begin with the traditional training phase, and it continues for epochs. After that, SWA training will start, with loading the best model on the validation from the previous training phase (becasue swa_load_from = 'best_bbox_mAP.pth'in the SWA config).

    As shown in swa_vfnet_r50 config, the SWA config is included at line 4 and only the SWA optimizer is reset at line 118 in this script. Note that configuring parameters in local scripts will overwrite those values inherited from the SWA config.

    You can change those parameters that are included in the SWA config to use different optimizers or different learning rate schedules for the SWA training. For example, to use a different initial learning rate, say 0.02, you just need to set swa_optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) in the SWA config (global effect) or in the swa_vfnet_r50 config (local effect).

    To start the training, run:

    ./tools/dist_train.sh configs/swa/swa_vfnet_r50_fpn_1x_coco.py 8
    
    
  2. Only-SWA mode. In this mode, the traditional training is skipped and only the SWA training is performed. In general, this mode should work with a pre-trained detection model which you can download from the MMDetection model zoo.

    Have a look at the swa_mask_rcnn_r101 config. By setting only_swa_training = True and swa_load_from = mask_rcnn_pretraind_model, this script conducts only SWA training, starting from a pre-trained detection model. To start the training, run:

    ./tools/dist_train.sh configs/swa/swa_mask_rcnn_r101_fpn_2x_coco.py 8
    
    

In both modes, we have implemented the validation stage and saving functions for the SWA model. Thus, it would be easy to monitor the performance and select the best SWA model.

Results and Models

For your convenience, we provide the following SWA models. These models are obtained by averaging checkpoints that are trained with cyclical learning rates for 12 epochs.

Model bbox AP (val) segm AP (val)     Download    
SWA-MaskRCNN-R50-1x-0.02-0.0002-38.2-34.7 39.1, +0.9 35.5, +0.8 model | config
SWA-MaskRCNN-R101-1x-0.02-0.0002-40.0-36.1 41.0, +1.0 37.0, +0.9 model | config
SWA-MaskRCNN-R101-2x-0.02-0.0002-40.8-36.6 41.7, +0.9 37.4, +0.8 model | config
SWA-FasterRCNN-R50-1x-0.02-0.0002-37.4 38.4, +1.0 - model | config
SWA-FasterRCNN-R101-1x-0.02-0.0002-39.4 40.3, +0.9 - model | config
SWA-FasterRCNN-R101-2x-0.02-0.0002-39.8 40.7, +0.9 - model | config
SWA-RetinaNet-R50-1x-0.01-0.0001-36.5 37.8, +1.3 - model | config
SWA-RetinaNet-R101-1x-0.01-0.0001-38.5 39.7, +1.2 - model | config
SWA-RetinaNet-R101-2x-0.01-0.0001-38.9 40.0, +1.1 - model | config
SWA-FCOS-R50-1x-0.01-0.0001-36.6 38.0, +1.4 - model | config
SWA-FCOS-R101-1x-0.01-0.0001-39.2 40.3, +1.1 - model | config
SWA-FCOS-R101-2x-0.01-0.0001-39.1 40.2, +1.1 - model | config
SWA-YOLOv3(320)-D53-273e-0.001-0.00001-27.9 28.7, +0.8 - model | config
SWA-YOLOv3(680)-D53-273e-0.001-0.00001-33.4 34.2, +0.8 - model | config
SWA-VFNet-R50-1x-0.01-0.0001-41.6 42.8, +1.2 - model | config
SWA-VFNet-R101-1x-0.01-0.0001-43.0 44.3, +1.3 - model | config
SWA-VFNet-R101-2x-0.01-0.0001-43.5 44.5, +1.0 - model | config

Notes:

  • SWA-MaskRCNN-R50-1x-0.02-0.0002-38.2-34.7 means this SWA model is produced based on the pre-trained Mask RCNN model that has a ResNet50 backbone, is trained under 1x schedule with the initial learning rate 0.02 and ending learning rate 0.0002, and achieves 38.2 bbox AP and 34.7 mask AP on the COCO val2017 respectively. This SWA model acheives 39.1 bbox AP and 35.5 mask AP, which are higher than the pre-trained model by 0.9 bbox AP and 0.8 mask AP respectively. This rule applies to other object detectors.

  • In addition to these baseline detectors, SWA can also improve more powerful detectors. One example is VFNetX whose performance on the COCO val2017 is improved from 52.2 AP to 53.4 AP (+1.2 AP).

  • More detailed results including AP50 and AP75 can be found here.

Contributing

Any pull requests or issues are welcome.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@article{zhang2020swa,
  title={SWA Object Detection},
  author={Zhang, Haoyang and Wang, Ying and Dayoub, Feras and S{\"u}nderhauf, Niko},
  journal={arXiv preprint arXiv:2012.12645},
  year={2020}
}

Acknowledgment

Many thanks to Dr Marlies Hankel and MASSIVE HPC for supporting precious GPU computation resources!

We also would like to thank MMDetection team for producing this great object detection toolbox.

License

This project is released under the Apache 2.0 license.

References

[1] Averaging Weights Leads to Wider Optima and Better Generalization; Pavel Izmailov, Dmitry Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson; Uncertainty in Artificial Intelligence (UAI), 2018

A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023