DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Overview

Vehicle Indicator Toolset

Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages.

Tracking of vehicles
The tracking of the vehicles with a track ID can be seen below.

|


Detection of the lanes.
Whenever the driver gets out of the lane, he will be displayed a warning to stay inside the lane.

|


Tail light detection
Detect all the tail lights of the vehicles applying brakes at night.

|


Traffic signal recognition
Warning is shown when to stop and resume again using traffic lights.

|



Vehicle collision estimation
Incase, a collision is estimated, driver is warned.

|



Pedestrian stepping
Whenever, pedestrian comes in our view, a warning is displayed.

|


Dependencies required:

  • Python 3.0
  • TensorFlow 2.0
  • openCV

Project Structure:

  • lanes:This folder contains files related to lane detection only.
  • tf-color: This folder contains files related to traffic light detection and detect the colour and accordingly give instructions to the driver.
  • tracked: This folder contains detection and tracking algorithm for the vehicles.
  • untracked: Detection and visualization only
  • utils: contains various functions that are used continuously again and again for different frames.
  • estimations: Detect pedestrians and vehicles too close to us that may cause collision.
  • cropping: Cropping frames using drag and drop or clicking points.
  • display: All the gifs shown above are stored here.

Requisities:

Download the tensorflow model from here.

  • Provide the path to the labels txt file using variable named PATH_TO_LABELS.
  • Provide the path to the tensorflow model using variable named model_name.
  • Make sure all the files are imported properly from the utils folder. If you get an error, add the location of the utils folder using sys module.
  • Tensorflow version 2.0 is must or else you may come across various error.

Working:

Run python integrate3.py or python intyolo.py after following the above mentioned requisities.
Now select the dash area for the car by clicking on multiple points as shown below. This is done to
remove detection of our own vehicle in some cases which may generate false results.

In the second step, select the area where searching of the lanes should be made. This may differ due to
the placement of dash-cams in the vehicle. The area above the horizon where road ends should not be selected.

Now, you can visualize the working and see the warnings/suggestions displayed to the driver.
All the works that are implemented individually are present in their respective folders, which are integrated together.
Old models may have some bugs now, as many files inside utils are changed.
Visit honors branch of models repository forked from tf/models to see more work on this project,
that I have done in google colab.

Drawbacks:

  • At night, searching for tail light should be made in the dark. If sufficient light is present, false cases can get introduced.
  • Tracking works good for bigger objects, while smaller may loose their track ID at places.
  • Threshold values used in lane detection needs to be altered depending on the roads and the quality of the videos.
  • Object detection needs to work properly for better results throughout. The model with higher accuracy should be downloaded from the link given above.
Owner
Alex Xu
Alex Xu
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023