Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Overview

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*.

Visually-grounded spoken language datasets can enable models to learn cross-modal correspondences with very weak supervision. However, modern audio-visual datasets contain biases that undermine the real-world performance of models trained on that data. We introduce Spoken ObjectNet, which is designed to remove some of these biases and provide a way to better evaluate how effectively models will perform in real-world scenarios. This dataset expands upon ObjectNet, which is a bias-controlled image dataset that features similar image classes to those present in ImageNet.

*Note: please see the ArXiv version for additional results on the test set.

Setup

  1. Clone this module and any submodules: git clone --recurse-submodules [email protected]:iapalm/Spoken-ObjectNet.git
  2. Follow the directions in data.md to set up ObjectNet images and the Spoken ObjectNet-50k corpus
  3. This code was tested with PyTorch 1.9 with CUDA 10.2 and Python 3.8.8.
  4. To train the models with the code as-is, we use 2 GPUs with 11 Gb of memory. A single GPU can be used, but the batch size or other parameters should be reduced.
  5. Note about the speed of this code: This code will work as-is on the Spoken ObjectNet audio captions, but the speed could be greatly improved. A main bottleneck is the resampling of the audio wav files from 48 kHz to 16 kHz, which is done with librosa here. We suggest to pre-process the audio files into the desired format first, and then remove this line or the on-the-fly spectrogram conversion entirely. We estimate the speed will improve 5x.
  6. On our servers, the zero-shot evaluation takes around 20-30 minutes and training takes around 4-5 days. As mentioned in the previous point, this could be improved with audio pre-processing.

Running Experiments

We support 3 experiments that can be used as baselines for future work:

  • (1) Zero-shot evaluation of the ResDAVEnet-VQ model trained on Places-400k [2].
  • (2) Fine-tuning the ResDAVEnet-VQ model trained on Places-400k on Spoken ObjectNet with a frozen image branch .
  • (3) Training the ResDAVEnet-VQ model from scratch on Spoken ObjectNet with a frozen image branch.
  • Note: fine-tuning the image branch on Spoken ObjectNet is not permitted, but fine-tuning the audio branch is allowed.

Zero-shot transfer from Places-400k

  • Download and extract the directory containing the model weights from this link. Keep the folder named RDVQ_00000 and move it to the exps directory.
  • In scripts/train.sh, change data_dt to data/Spoken-ObjectNet-50k/metadata/SON-test.json to evaluate on the test set instead of the validation set.
  • Run the following command for zero-shot evaluation: source scripts/train.sh 00000 RDVQ_00000 "--resume True --mode eval"
  • The results are printed in exps/RDVQ_00000_transfer/train.out

Fine-tune the model from Places-400k

  • Download and extract the directory containing the args.pkl file which specifies the fine-tuning arguments. The directory at this link contains the args.pkl file as well as the model weights.
  • The model weights of the fine-tuned model are provided for easier evaluation. Run the following command to evaluate the model using those weights: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True --mode eval"
  • Otherwise, to fine-tune the model yourself, first move the model weights to a new folder model_dl, then make a new folder model to save the new weights, and then run the following command: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True". This still require the args.pkl file mentioned previously.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Train the model from scratch on Spoken ObjectNet

  • Run the following command to train the model from scratch: source scripts/train.sh 00000 RDVQ_scratch_frozen "--lr 0.001 --freeze-image-model True"
  • The model weights can be evaulated with source scripts/train.sh 00000 RDVQ_scratch_frozen "--resume True --mode eval"
  • We also provide the trained model weights at this link.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Contact

If You find any problems or have any questions, please open an issue and we will try to respond as soon as possible. You can also try emailing the first corresponding author.

References

[1] Palmer, I., Rouditchenko, A., Barbu, A., Katz, B., Glass, J. (2021) Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. Proc. Interspeech 2021, 3650-3654, doi: 10.21437/Interspeech.2021-245

[2] David Harwath*, Wei-Ning Hsu*, and James Glass. Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech. Proc. International Conference on Learning Representations (ICLR), 2020

Spoken ObjectNet - Bibtex:

@inproceedings{palmer21_interspeech,
  author={Ian Palmer and Andrew Rouditchenko and Andrei Barbu and Boris Katz and James Glass},
  title={{Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={3650--3654},
  doi={10.21437/Interspeech.2021-245}
}
Owner
Ian Palmer
Ian Palmer
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022