Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Overview

Graph-to-Graph Transformers

Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NLP) tasks, especially when combined with language-model pre-training, such as BERT.

We propose "Graph-to-Graph Transformer" and "Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement"(accepted to TACL) to generalize vanilla Transformer to encode graph structure, and builds the desired output graph.

Note : To use G2GTr model for transition-based dependency parsing, please refer to G2GTr repository.

Contents

Installation

Following packages should be included in your environment:

  • Python >= 3.7
  • PyTorch >= 1.4.0
  • Transformers(huggingface) = 2.4.1

The easier way is to run the following command:

conda env create -f environment.yml
conda activate rngtr

Quick Start

Graph-to-Graph Transformer architecture is general and can be applied to any NLP tasks which interacts with graphs. To use our implementation in your task, you just need to add BertGraphModel class to your code to encode both token-level and graph-level information. Here is a sample usage:

#Loading BertGraphModel and initialize it with available BERT models.
import torch
from parser.utils.graph import initialize_bertgraph,BertGraphModel
# inputing unlabelled graph with label size 5, and Layer Normalization of key
# you can load other BERT pre-trained models too.
encoder = initialize_bertgraph('bert-base-cased',layernorm_key=True,layernorm_value=False,
             input_label_graph=False,input_unlabel_graph=True,label_size=5)

#sample input
input = torch.tensor([[1,2],[3,4]])
graph = torch.tensor([ [[1,0],[0,1]],[[0,1],[1,0]] ])
graph_rel = torch.tensor([[0,1],[3,4]])
output = encoder(input_ids=input,graph_arc=graph,graph_rel=graph_rel)
print(output[0].shape)
## torch.Size([2, 2, 768])

# inputting labelled graph
encoder = initialize_bertgraph('bert-base-cased',layernorm_key=True,layernorm_value=False,
             input_label_graph=True,input_unlabel_graph=False,label_size=5)

#sample input
input = torch.tensor([[1,2],[3,4]])
graph = torch.tensor([ [[2,0],[0,3]],[[0,1],[4,0]] ])
output = encoder(input_ids=input,graph_arc=graph,)
print(output[0].shape)
## torch.Size([2, 2, 768])

If you just want to use BertGraphModel in your research, you can just import it from our repository:

from parser.utils.graph import BertGraphModel,BertGraphConfig
config = BertGraphConfig(YOUR-CONFIG)
config.add_graph_par(GRAPH-CONFIG)
encoder = BertGraphModel(config)

Data Pre-processing and Initial Parser

Dataset Preparation

We evaluated our model on UD Treebanks, English and Chinese Penn Treebanks, and CoNLL 2009 Shared Task. In following sections, we prepare datasets and their evaluation scripts.

Penn Treebanks

English Penn Treebank can be downloaded from english and chinese under LDC license. For English Penn Treebank, replace gold POS tags with Stanford POS tagger with following command in this repository:

bash scripts/postag.sh ${data_dir}/ptb3-wsj-[train|dev|dev.proj|test].conllx

CoNLL 2009 Treebanks

You can download Treebanks from here under LDC license. We use predicted POS tags provided by organizers.

UD Treebanks

You can find required Treebanks from here. (use version 2.3)

Initial Parser

As mentioned in our paper, you can use any initial parser to produce dependency graph. Here we use Biaffine Parser for Penn Treebanks, and German Corpus. We also apply our model to ouput prediction of UDify parser for UD Treebanks.
Biaffine Parser: To prepare biaffine initial parser, we use this repository to produce output predictions.
UDify Parser: For UD Treebanks, we use UDify repository to produce required initial dependency graph.
Alternatively, you can easily run the following command file to produce all required outputs:

bash job_scripts/udify_dataset.bash

Training

To train your own model, you can easily fill out the script in job_scripts directory, and run it. Here is the list of sample scripts:

Model Script
Syntactic Transformer baseline.bash
Any initial parser+RNGTr rngtr.bash
Empty+RNGTr empty_rngtr.bash

Evaluation

First you should download official scripts from UD, Penn Treebaks, and German. Then, run the following command:

bash job_scripts/predict.bash

To replicate refinement analysis and error analysis results, you should use MaltEval tools.

Predict Raw Sentences

You can also predict dependency graphs of raw texts with a pre-trained model by modifying predict.bash file. Just set input_type to raw. Then, put all your sentences in a .txt file, and the output will be in CoNNL format.

Citations

If you use this code for your research, please cite these works as:

@misc{mohammadshahi2020recursive,
      title={Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement}, 
      author={Alireza Mohammadshahi and James Henderson},
      year={2020},
      eprint={2003.13118},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@inproceedings{mohammadshahi-henderson-2020-graph,
    title = "Graph-to-Graph Transformer for Transition-based Dependency Parsing",
    author = "Mohammadshahi, Alireza  and
      Henderson, James",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.294",
    pages = "3278--3289",
    abstract = "We propose the Graph2Graph Transformer architecture for conditioning on and predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency parsing. After proposing two novel Transformer models of transition-based dependency parsing as strong baselines, we show that adding the proposed mechanisms for conditioning on and predicting graphs of Graph2Graph Transformer results in significant improvements, both with and without BERT pre-training. The novel baselines and their integration with Graph2Graph Transformer significantly outperform the state-of-the-art in traditional transition-based dependency parsing on both English Penn Treebank, and 13 languages of Universal Dependencies Treebanks. Graph2Graph Transformer can be integrated with many previous structured prediction methods, making it easy to apply to a wide range of NLP tasks.",
}

Have a question not listed here? Open a GitHub Issue or send us an email.

Owner
Idiap Research Institute
Idiap Research Institute
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022