An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Overview

Multi-Car Racing Gym Environment

This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment.

This environment is a simple multi-player continuous contorl task. The state consists of 96x96 pixels for each player. The per-player reward is -0.1 every timestep and +1000/num_tiles * (num_agents-past_visitors)/num_agents for each tile visited. For example, in a race with 2 agents, the first agent to visit a tile receives a reward of +1000/num_tiles and the second agent to visit the tile receives a reward of +500/num_tiles for that tile. Each agent can only be rewarded once for visiting a particular tile. The motivation behind this reward structure is to be sufficiently dense for simple learnability of the basic driving skill while incentivising competition.

Installation

git clone https://github.com/igilitschenski/multi_car_racing.git
cd multi_car_racing
pip install -e .

Basic Usage

After installation, the environment can be tried out by running:

python -m gym_multi_car_racing.multi_car_racing

This will launch a two-player variant (each player in its own window) that can be controlled via the keyboard (player 1 via arrow keys and player 2 via W, A, S, D).

Let's quickly walk through how this environment can be used in your code:

import gym
import gym_multi_car_racing

env = gym.make("MultiCarRacing-v0", num_agents=2, direction='CCW',
        use_random_direction=True, backwards_flag=True, h_ratio=0.25,
        use_ego_color=False)

obs = env.reset()
done = False
total_reward = 0

while not done:
  # The actions have to be of the format (num_agents,3)
  # The action format for each car is as in the CarRacing-v0 environment.
  action = my_policy(obs)

  # Similarly, the structure of this is the same as in CarRacing-v0 with an
  # additional dimension for the different agents, i.e.
  # obs is of shape (num_agents, 96, 96, 3)
  # reward is of shape (num_agents,)
  # done is a bool and info is not used (an empty dict).
  obs, reward, done, info = env.step(action)
  total_reward += reward
  env.render()

print("individual scores:", total_reward)

Overview of environment parameters:

Parameter Type Description
num_agents int Number of agents in environment (Default: 2)
direction str Winding direction of the track. Can be 'CW' or 'CCW' (Default: 'CCW')
use_random_direction bool Randomize winding direction of the track. Disregards direction if enabled (Default: True).
backwards_flag bool Shows a small flag if agent driving backwards (Default: True).
h_ratio float Controls horizontal agent location in the state (Default: 0.25)
use_ego_color bool In each view the ego vehicle has the same color if activated (Default: False).

This environment contains the CarRacing-v0 environment as a special case. It can be created via

env = gym.make("MultiCarRacing-v0", num_agents=1, use_random_direction=False, 
        backwards_flag=False)

Deprecation Warning: We might further simplify the environment in the future. Our current thoughts on deprecation concern the following functionalities.

  • The direction related arguments (use_random_direction & direction) were initially aded to make driving fairer as the agents' spawning locations were fixed. We resolved this unfairnes by randomizing the start positions of the agents instead.
  • The impact of backwards_flag seems very little in practice.
  • Similarly, it was interesting to play around with placing the agent at different horizontal locations of the observation (via h_ratio) but the default from CarRacing-v0 ended up working well.
  • The environment also contains some (not active) code on allowing penalization of driving backwards. We were worried that agents might go backwards to have more tiles on which they are first but it turned out not to be necessary for successfull learning.

We are interested in any feedback regarding these planned deprecations.

Citation

If you find this environment useful, please cite our CoRL 2020 paper:

@inproceedings{SSG2020,
    title={Deep Latent Competition: Learning to Race Using Visual
      Control Policies in Latent Space},
    author={Wilko Schwarting and Tim Seyde and Igor Gilitschenski
      and Lucas Liebenwein and Ryan Sander and Sertac Karaman and Daniela Rus},
    booktitle={Conference on Robot Learning},
    year={2020}
}
Owner
Igor Gilitschenski
Igor Gilitschenski
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022