This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

Overview

Sample streaming Dataflow pipeline written in Python

This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

For more details, see the following Beam Summit 2021 talk:

To run this pipeline, you need to have the SDK installed, and a project in Google Cloud Platform, even if you run the pipeline locally with the direct runner:

Description of the pipeline

Data input

We are using here a public PubSub topic with data, so we don't need to setup our own to run this pipeline.

The topic is projects/pubsub-public-data/topics/taxirides-realtime.

That topic contains messages from the NYC Taxi Ride dataset. Here is a sample of the data contained in a message in that topic:

{
  "ride_id": "328bec4b-0126-42d4-9381-cb1dbf0e2432",
  "point_idx": 305,
  "latitude": 40.776270000000004,
  "longitude": -73.99111,
  "timestamp": "2020-03-27T21:32:51.48098-04:00",
  "meter_reading": 9.403651,
  "meter_increment": 0.030831642,
  "ride_status": "enroute",
  "passenger_count": 1
}

But the messages also contain metadata, that is useful for streaming pipelines. In this case, the messages contain an attribute of name ts, which contains the same timestamp as the field of name timestamp in the data. Remember that PubSub treats the data as just a string of bytes, so it does not know anything about the data itself. The metadata fields are normally used to publish messages with specific ids and/or timestamps.

To inspect the messages from this topic, you can create a subscription, and then pull some messages.

To create a subscription, use the gcloud cli utility (installed by default in the Cloud Shell):

export TOPIC=projects/pubsub-public-data/topics/taxirides-realtime
gcloud pubsub subscriptions create taxis --topic $TOPIC

To pull messages:

gcloud pubsub subscriptions pull taxis --limit 3

or if you have jq (for pretty printing of JSON)

gcloud pubsub subscriptions pull taxis --limit 3 | grep " {" | cut -f 2 -d ' ' | jq

Pay special attention to the Attributes column (metadata). You will see that the timestamp included as a field in the metadata, as well as in the data. We will leverage that metadata field for the timestamps used in our streaming pipeline.

Data output

This pipeline writes the output to BigQuery, in streaming append-only mode.

The destination tables must exist prior to running the pipeline.

If you have the GCloud cli utility installed (for instance, it is installed by default in the Cloud Shell), you can create the tables from the command line.

You need to create a BigQuery dataset too, in the same region:

After that, you can create the destination tables with the provided script

./scripts/create_tables.sh taxi_rides

Algorithm / business rules

We are using a session window with a gap of 10 seconds. That means that all the messages with the same ride_id will be grouped together, as long as their timestamps are 10 seconds within each other. Any message with a timestamp more than 10 seconds apart will be discarded (for old timestamps) or will open a new window (for newer timestamps).

With the messages inside each window (that is, each different ride_id will be part of a different window), we will calculate the duration of the session, as the difference between the min and max timestamps in the window. We will also calculate the number of events in that session.

We will use a GroupByKey to operate with all the messages in a window. This will load all the messages in the window into memory. This is fine, as in Beam streaming, a window is always processed in a worker (windows cannot be split across different workers).

This is an example of the kind of logic that can be implemented leveraging windows in streaming pipelines. This grouping of messages across ride_id and event timestamps is automatically done by the pipeline, and we just need to express the generic operations to be performed with each window, as part of our pipeline.

Running the pipeline

Prerequirements

You need to have a Google Cloud project, and the gcloud SDK configured to run the pipeline. For instance, you could run it from the Cloud Shell in Google Cloud Platform (gcloud would be automatically configured).

Then you need to create a Google Cloud Storage bucket, with the same name as your project id, and in the same region where you will run Dataflow:

Make sure that you have a Python environment with Python 3 (<3.9). For instance a virtualenv, and install apache-beam[gcp] and python-dateutil in your local environment. For instance, assuming that you are running in a virtualenv:

pip install "apache-beam[gcp]" python-dateutil

Run the pipeline

Once the tables are created and the dependencies installed, edit scripts/launch_dataflow_runner.sh and set your project id and region, and then run it with:

./scripts/launch_dataflow_runner.sh

The outputs will be written to the BigQuery tables, and in the profile directory in your bucket you should see Python gprof files with profiling information.

CPU profiling

Beam uses the Python profiler to produce files in Python gprof format. You will need some scripting to interpret those files and extracts insights out of them.

In this repository, you will find some sample output in data/beam.prof, that you can use to check what the profiling output looks like. Use the following Colab notebook with an example analyzing that sample profiling data:

Refer to this post for more details about how to interpret that file:

License

Copyright 2021 Israel Herraiz

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Israel Herraiz
Strategic Cloud Engineer @GoogleCloudPlatform
Israel Herraiz
High-level geospatial data visualization library for Python.

geoplot: geospatial data visualization geoplot is a high-level Python geospatial plotting library. It's an extension to cartopy and matplotlib which m

Aleksey Bilogur 1k Jan 01, 2023
Editor and Presenter for Manim Generated Content.

Editor and Presenter for Manim Generated Content. Take a look at the Working Example. More information can be found on the documentation. These Browse

Manim Community 149 Dec 29, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations

DomainCAT (Domain Connectivity Analysis Tool) Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of dom

DomainTools 34 Dec 09, 2022
649 Pokémon palettes as CSVs, with a Python lib to turn names/IDs into palettes, or MatPlotLib compatible ListedColormaps.

PokePalette 649 Pokémon, broken down into CSVs of their RGB colour palettes. Complete with a Python library to convert names or Pokédex IDs into eithe

11 Dec 05, 2022
阴阳师后台全平台(使用网易 MuMu 模拟器)辅助。支持御魂,觉醒,御灵,结界突破,秘闻副本,地域鬼王。

阴阳师后台全平台辅助 Python 版本:Python 3.8.3 模拟器:网易 MuMu | 雷电模拟器 模拟器分辨率:1024*576 显卡渲染模式:兼容(OpenGL) 兼容 Windows 系统和 MacOS 系统 思路: 利用 adb 截图后,使用 opencv 找图找色,模拟点击。使用

简讯 27 Jul 09, 2022
A Python-based non-fungible token (NFT) generator built using Samilla and Matplotlib

PyNFT A Pythonic NF (non-fungible token) generator built using Samilla and Matplotlib Use python pynft.py [amount] The intention behind this generato

Ayush Gundawar 6 Feb 07, 2022
:art: Diagram as Code for prototyping cloud system architectures

Diagrams Diagram as Code. Diagrams lets you draw the cloud system architecture in Python code. It was born for prototyping a new system architecture d

MinJae Kwon 27.5k Dec 30, 2022
📊 Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms 🍑 📊 👏 Examples

Max Humber 54 Oct 04, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022