Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

Overview

🦩 Flamingo - Pytorch

Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the perceiver resampler (including the scheme where the learned queries contributes keys / values to be attended to, in addition to media embeddings), the specialized masked cross attention blocks, and finally the tanh gating at the ends of the cross attention + corresponding feedforward blocks

Install

$ pip install flamingo-pytorch

Usage

import torch
from flamingo_pytorch import PerceiverResampler

perceive = PerceiverResampler(
    dim = 1024,
    depth = 2,
    dim_head = 64,
    heads = 8,
    num_latents = 64,    # the number of latents to shrink your media sequence to, perceiver style
    num_time_embeds = 4  # say you have 4 images maximum in your dialogue
)

medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension)
perceived = perceive(medias) # (1, 2, 64, 1024) - (batch, time, num latents, dimension)

Then you insert the GatedCrossAttentionBlock at different intervals in your giant language model. Your text would then attend to the perceived media from above

The recommended way to derive the media_locations boolean tensor would be to allocate a special token id to the media, and then, at the start of your large language model, do media_locations = text_id == media_token_id

import torch
from flamingo_pytorch import GatedCrossAttentionBlock

cross_attn = GatedCrossAttentionBlock(
    dim = 1024,
    dim_head = 64,
    heads = 8
)

text = torch.randn(1, 512, 1024)
perceived = torch.randn(1, 2, 64, 1024)

media_locations = torch.randint(0, 2, (1, 512)).bool()

text = cross_attn(
    text,
    perceived,
    media_locations = media_locations
)

That's it!

Attention is all you need.

Full working example with Flamingo + PaLM 🌴 🦩 🌴

Integration with PaLM

First install vit-pytorch for the vision encoder

$ pip install vit-pytorch

Then

from vit_pytorch.vit import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

vit = Extractor(vit, return_embeddings_only = True)

# first take your trained image encoder and wrap it in an adapter that returns the image embeddings
# here we use the ViT from the vit-pytorch library

import torch
from flamingo_pytorch import FlamingoPaLM

# a PaLM language model, the 540 billion parameter model from google that shows signs of general intelligence

flamingo_palm = FlamingoPaLM(
    num_tokens = 20000,          # number of tokens
    dim = 1024,                  # dimensions
    depth = 12,                  # depth
    heads = 8,                   # attention heads
    dim_head = 64,               # dimension per attention head
    img_encoder = vit,           # plugin your image encoder (this can be optional if you pass in the image embeddings separately, but probably want to train end to end given the perceiver resampler)
    media_token_id = 3,          # the token id representing the [media] or [image]
    cross_attn_every = 3,        # how often to cross attend
    perceiver_num_latents = 64,  # perceiver number of latents, should be smaller than the sequence length of the image tokens
    perceiver_depth = 2          # perceiver resampler depth
)

# train your PaLM as usual

text = torch.randint(0, 20000, (2, 512))

palm_logits = flamingo_palm(text)

# after much training off the regular PaLM logits
# now you are ready to train Flamingo + PaLM
# by passing in images, it automatically freezes everything but the perceiver and cross attention blocks, as in the paper

dialogue = torch.randint(0, 20000, (4, 512))
images = torch.randn(4, 2, 3, 256, 256)

flamingo_logits = flamingo_palm(dialogue, images)

# do your usual cross entropy loss

It is quite evident where this is all headed if you think beyond just images.

Inception

For factual correctness, just imagine where this system would stand if one were to use a state of the art retrieval language model as the base.

Citations

@article{Alayrac2022Flamingo,
    title   = {Flamingo: a Visual Language Model for Few-Shot Learning},
    author  = {Jean-Baptiste Alayrac et al},
    year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • PerceiverResampler missing some LayerNorms?

    PerceiverResampler missing some LayerNorms?

    Hey, it feels like PerceiverResampler is missing some LayerNorms? it seems to me we should layer-norm x before sending to attentions loop, and may be add layer-norm to ff(latents) + latents?

    opened by inspirit 7
  • Missing flatten op in PerceiverResampler?

    Missing flatten op in PerceiverResampler?

    Hi, It seems that Flamingo did "x_f = flatten(x_f) # [T, S, d] -> [T * S, d]" (batch size == 1) before putting x_f to attention.

    So, it should be like: medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension) perceived = perceive(medias) # (1, 64, 1024) - (batch, num latents, dimension)

    ??

    opened by zengyan-97 6
  • wrong attention masks?

    wrong attention masks?

    https://github.com/lucidrains/flamingo-pytorch/blob/44920f4191ba3c280ff84c6ebc76025656d1dab5/flamingo_pytorch/flamingo_pytorch.py#L159

    In the flamingo paper, the language features in the gated cross-attention layers only attend to the visual features from the immediate preceding image. I believe your attention masks are created in such a way that they attend to the visual features from all preceding images. Can you confirm? If so, a fix would be to simply change the '>=' to '=='.

    opened by dhansmair 4
  • zeroing out attention not working

    zeroing out attention not working

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_pytorch.py#L179

    you are not using the inplace version of the function: https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html#torch.Tensor.masked_fill_

    so I think this line does not have an effect.

    Best, David

    opened by dhansmair 2
  • Applying parallel attn with ff to existing pretrained model?

    Applying parallel attn with ff to existing pretrained model?

    Hi - awesome work! I am trying to understand ? I couldn't find a paper - only a reference to https://github.com/kingoflolz/mesh-transformer-jax. Is this right? Am I understanding that it is bascially applying multiple operations of for qkv and ff at once? Is it possible to use this trick to modify an existing pretrained model?

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_palm.py#L90

    Many thanks in advance!

    Huu

    opened by ontocord 1
  • How to use Flamingo for VQA task?

    How to use Flamingo for VQA task?

    Hi, Thanks for sharing this awesome implementation. I am very interested in using Flamingo model for my usecase. How I can use this implementation to get inference on my dataset for VQA task? I have certain images of products and want extract some information image of product by questioning it. How I can do it ?

    Please help.

    thanks

    opened by karndeepsingh 0
  • Fine-tuning of a model

    Fine-tuning of a model

    Hi, Thank you for this great work. I want to ask how can I fine-tune this model on my dataset for some downstream task like image captioning or image classification? If it is possible for you can you also please share the code?

    opened by ans92 0
  • Need a sample ipython notebook

    Need a sample ipython notebook

    Hello, @lucidrains,

    Thank you for providing this.

    For demo purposes, could you please provide a sample demo in Jupyter notebook?🫠

    Best, LITDataScience

    opened by LITDataScience 0
Releases(0.1.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022