Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Overview

ETSformer - Pytorch

Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Install

$ pip install etsformer-pytorch

Usage

import torch
from etsformer_pytorch import ETSFormer

model = ETSFormer(
    time_features = 4,
    model_dim = 512,                # in paper they use 512
    embed_kernel_size = 3,          # kernel size for 1d conv for input embedding
    layers = 2,                     # number of encoder and corresponding decoder layers
    heads = 8,                      # number of exponential smoothing attention heads
    K = 4,                          # num frequencies with highest amplitude to keep (attend to)
    dropout = 0.2                   # dropout (in paper they did 0.2)
)

timeseries = torch.randn(1, 1024, 4)

pred = model(timeseries, num_steps_forecast = 32) # (1, 32, 4) - (batch, num steps forecast, num time features)

For using ETSFormer for classification, using cross attention pooling on all latents and level output

import torch
from etsformer_pytorch import ETSFormer, ClassificationWrapper

etsformer = ETSFormer(
    time_features = 1,
    model_dim = 512,
    embed_kernel_size = 3,
    layers = 2,
    heads = 8,
    K = 4,
    dropout = 0.2
)

adapter = ClassificationWrapper(
    etsformer = etsformer,
    dim_head = 32,
    heads = 16,
    dropout = 0.2,
    level_kernel_size = 5,
    num_classes = 10
)

timeseries = torch.randn(1, 1024)

logits = adapter(timeseries) # (1, 10)

Citation

@misc{woo2022etsformer,
    title   = {ETSformer: Exponential Smoothing Transformers for Time-series Forecasting}, 
    author  = {Gerald Woo and Chenghao Liu and Doyen Sahoo and Akshat Kumar and Steven Hoi},
    year    = {2022},
    eprint  = {2202.01381},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • What are your thoughts on using latents for additional classification task

    What are your thoughts on using latents for additional classification task

    Hi! I was wondering if you have thought about aggregating seasonal and growth latents for additional tasks (for example classification)? What are the possible ways to bring latents into single feature vector in your opinion? The easiest one would be just get the mean along layers and time dimensions but that seams to be too naive. Another idea I had it to use Cross Attention mechanic with single time query key to aggregate latents:

    all_latents = torch.cat([latent_growths, latent_seasonals], dim=-1)
    all_latents = rearrange(all_latents, 'b n l d -> (b l) n d')
    # q = nn.Parameter(torch.randn(all_latents_dim))
    q = repeat(q, 'd -> b 1 d', b = all_latents.shape[0])
    agg_latent = cross_attention(query=q, context=all_latents)
    agg_latent = rearrange(all_latents, '(b l) n d -> b (l n) d')
    agg_latent = agg_latent.mean(dim=1) # may be we should have done it before cross attention?
    

    Would be great to hear your thoughts

    opened by inspirit 15
  • Pre LayerNorm might be required for k,v?

    Pre LayerNorm might be required for k,v?

    https://github.com/lucidrains/ETSformer-pytorch/blob/2561053007e919409b3255eb1d0852c68799d24f/etsformer_pytorch/etsformer_pytorch.py#L440

    In my early tests I see some instability in training results, I was wondering if it might be good idea to LayerNorm latents before constructing key and values?

    opened by inspirit 5
  • growth_term calculation error

    growth_term calculation error

    https://github.com/lucidrains/ETSformer-pytorch/blob/e1d8514b44d113ead523aa6307986833e68eecc5/etsformer_pytorch/etsformer_pytorch.py#L233-L235

    It looks like you are not using growth and growth_smoothing_weightsto calculate growth_term

    opened by inspirit 4
  • Backward gradient error

    Backward gradient error

    Hello,

    i was trying to run the provided class and see following error: Function ScatterBackward0 returned an invalid gradient at index 1 - got [64, 4, 128] but expected shape compatible with [64, 33, 128]

    model = ETSFormer(
                time_features = 9,
                model_dim = 128,
                embed_kernel_size = 3,
                layers = 2,
                heads = 4,
                K = 4,
                dropout = 0.2
            )
    

    input = torch.rand(64, 64, 9) x = model(input, num_steps_forecast = 16)

    opened by inspirit 3
  • Does ETS-Former allow adding features

    Does ETS-Former allow adding features

    @lucidrains Thanks for making the code of the model available!

    In your paper, you state that the model infers seasonal patterns itself, so that there is no need to add time features like week, month, etc.

    Still, to increase the applicability of your approach, does the current implementation allow to add any (time-invariant and time-varying) features, e.g., categorical or numeric?

    opened by StatMixedML 2
  • wrong order of arguments

    wrong order of arguments

    https://github.com/lucidrains/ETSformer-pytorch/blob/2e0d465576c15fc8d84c4673f93fdd71d45b799c/etsformer_pytorch/etsformer_pytorch.py#L327

    you pass latents on wrong order to Level module: according to forward method first should be growth and then seasonal

    opened by inspirit 1
  • Clarification regarding data pre-processing

    Clarification regarding data pre-processing

    Hello,

    I was trying to run the ETSformer for ETT dataset. The paper mentions that the dataset is split as 60/20/20 for train, validation and test. Could you give some insight as to how the dataset split is happening in the code.

    Thank you.

    opened by vageeshmaiya 2
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022