Cairo-math-64x61 - Fixed point 64.61 math library for Cairo / Starknet

Overview

Cairo Math 64x61

A fixed point 64.61 math library for Cairo & Starknet

Signed 64.61 Fixed Point Numbers

A signed 64.61-bit fixed point number is a fraction in which the numerator is a signed 125-bit integer and the denominator is 2^61. Since the denominator stays the same there is no need to store it (as in a floating point value).

64.61 is utilized as the 125 bit representation allows for overflow up to 2^125 * 2^125 (250 bits) during calculation taking advantage of Cairo's 251 bit felts.

Can represent values in the range of -2^64 to 2^64 with precision to 4.34e-19.

Standard Library

Math64x61 includes implementation of mul, div, sqrt, exp, ln, log2, log10, and pow as well as conversion and assertion methods.

Trigonometry Library

Trig64x61 includes implementation of sin, cos, tan and their inverses.

Hyperbolic Library

Hyp64x61 includes implementation of sinh, cosh, tanh, and their inverses.

Extensibility

This library strives to adhere to the OpenZeppelin extensibility pattern: https://github.com/OpenZeppelin/cairo-contracts/blob/main/docs/Extensibility.md

Comments
  • dev: add namespaces

    dev: add namespaces

    Hey,

    I was wondering if you'd accept a PR to introduce namespaces to your lib. Using a namespace is the current accepted best practice, it's much easier on the eyes and to work with from a developer experience perspective.

    See the changes to Math64x61Mock.cairo to get the feel for the difference.

    So far, this PR only has changes in the Math module, but if you're ok with it, I can update Hyp, Trig and Vec as well.

    opened by milancermak 2
  • Function to convert oracle prices

    Function to convert oracle prices

    This PR adds functions that help with using different oracles(https://www.stork.network/, https://empiric.network/, etc). These oracles return prices multiplied by 10**18 and converting these prices to the Math64x61 format can sometimes be quite tricky due to errors in overflow etc.

    Functions proposed here address this problem and can convert such prices to the desired Match64x61 format. Tests are provided as well.

    opened by Chepelau 1
  • OZ standards and PyPi update

    OZ standards and PyPi update

    • Updated to adhere to open zeppelin lib extensibility standards (breaking change, requires changing imports / method refs)
    • Switched from npm to pip module installation to better support cairo / python ecosystem
    • removed starknet language declarations to allow for usage in cairo projects (see #3)
    opened by clexmond 0
  • Rounding bug when using library

    Rounding bug when using library

    Hi, we have a precision bug when converting felts with the library and would like to get some help.

    We have a fee rate that we store globally and per account. The value of the fee rate is 0.0004 but before the value is sent to the contract function we add some quantum precision to it by doing (i.e 0.0004 * 10^8) and then send it as 40000. In the function where the fee rate is used, we remove this precision by doing a Math.to_decimal8(feeRate). All Math.to_decimal8(feeRate) does is remove the quantum precision before the fee rate is stored in storage.

    To further illustrate this, when we try to retrieve the fee rate stored, instead of getting 40000, the value returned is 39999. But it does not stop there. We also noticed that when the fee rate is a multiple of 5, the exact value is returned with no change in precision. Eg 0.0005 (or 50000) returns 50000. But any other value that is not a multiple of 5 loses precision.

    A code sample to demonstrate this is attached below.

    // SPDX-License-Identifier: Apache-2.0
    %lang starknet
    
    from cairo_math_64x61.math64x61 import Math64x61
    from starkware.cairo.common.bool import TRUE, FALSE
    from starkware.cairo.common.cairo_builtins import HashBuiltin
    
    struct FeeRate {
        exists: felt,
        maker: felt,
        taker: felt,
    }
    
    @storage_var
    func global_fee_rate() -> (feeRate: FeeRate) {
    }
    
    @storage_var
    func account_fee_rate(account: felt) -> (feeRate: FeeRate) {
    }
    
    namespace Math {
        const DOT8 = (10 ** 8) * Math64x61.FRACT_PART;
        func to_decimal8{range_check_ptr}(num: felt) -> felt {
           alloc_locals;
           // To fixed precision
           local _ans = Math64x61.fromFelt(num);
           // Remove quantum precision
           let ans = Math64x61.div(_ans, DOT8);
           return ans;
        }
    
        func to_felt8{range_check_ptr}(num: felt) -> felt {
            // Add quantum precision
            let _ans =  Math64x61.mul(num, DOT8);
            // Remove fixed precision
            let ans = Math64x61.toFelt(_ans);
            return ans;
        }
    }
    
    @external
    func convertAndSetGlobalFeeRate{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        maker_fee: felt, taker_fee: felt
    ) {
        alloc_locals;
    
        let maker_fee_d = Math.to_decimal8(maker_fee);
        let taker_fee_d = Math.to_decimal8(taker_fee);
    
        let fee_rate_d = FeeRate(exists=1, maker=maker_fee_d, taker=taker_fee_d);
        global_fee_rate.write(fee_rate_d);
    
        return ();
    }
    
    @view
    func convertAndGetAccountFeeRate{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        account: felt) -> (fee_rate: FeeRate) {
        alloc_locals;
        let (_account_fee_rate) = account_fee_rate.read(account);
    
        if (_account_fee_rate.exists != FALSE) {
            return (_account_fee_rate,);
        }
    
        // Return global fee rate if account fee rate is not set
        let (_global_fee_rate) = global_fee_rate.read();
        let maker_fee = Math.to_felt8(_global_fee_rate.maker);
        let taker_fee = Math.to_felt8(_global_fee_rate.taker);
    
        let fee_rate = FeeRate(
            exists=1,
            maker=maker_fee,
            taker=taker_fee,
        );
        return (fee_rate,);
    }
    
    

    Here's a test case that shows that converting the fee_rate to decimal_8 before storage and after retrieval

    import dataclasses
    import os
    
    import pytest
    from starkware.starknet.testing.starknet import Starknet
    from starkware.starkware_utils.error_handling import StarkException
    
    from .types import TokenAsset
    from .utils import str_to_felt, to_quantum
    
    FILE_DIR = os.path.dirname(__file__)
    CAIRO_PATH = [os.path.join(FILE_DIR, "../contracts")]
    ROUNDING_FILE = os.path.join(FILE_DIR, "../contracts/test/Rounding.cairo")
    ACCOUNT_ADDRESS = str_to_felt("ACCOUNT ADDRESS")
    
    @pytest.fixture()
    async def contracts():
        starknet = await Starknet.empty()
        rounding_contract = await starknet.deploy(
            source=ROUNDING_FILE, cairo_path=CAIRO_PATH, disable_hint_validation=True
        )
    
        return rounding_contract
    
    async def test_fee_rate_with_rounding(contracts):
        rounding_contract = contracts
        maker_fee_rate = to_quantum(0.0001)
        taker_fee_rate = to_quantum(0.0004)
        await rounding_contract.convertAndSetGlobalFeeRate(
            maker_fee_rate,
            taker_fee_rate
        ).execute()
    
        account_fee_rates = await rounding_contract.convertAndGetAccountFeeRate(ACCOUNT_ADDRESS).call()
        assert not (account_fee_rates.result.fee_rate.maker == maker_fee_rate)
        assert not (account_fee_rates.result.fee_rate.taker == taker_fee_rate)
    

    I will be happy to provide further information to help debug this issue. Thanks!

    opened by mayowaparadigm 0
  • A bug in the function`ceil`

    A bug in the function`ceil`

    If the input of the ceil function is an integer x(that is, x modulo FRACT_PART is equal to 0), it will return x+1. But I think this does not match the usual semantics of ceil function in mathematics.

    The bug is found by Medjai, a symbolic execution tool for the Cairo program. The spec we write for ceil is:

    func ceil_spec{range_check_ptr}():
        alloc_locals
        let (local x) = SymbolicMath64x61()
        let (local res) = Math64x61.ceil(x)
        verify_le_signed(x, res)
        verify_lt_signed(res - Math64x61.ONE, x)
        let (_, rem) = signed_div_rem(res, Math64x61.ONE, Math64x61.BOUND)
        medjai_assert_eq_felt(rem, 0)
        return ()
    end
    
    opened by DOFYPXY 0
  • toUint256() function should return the number without the floating part

    toUint256() function should return the number without the floating part

    Thanks to the great lib.

    I just have one remark. I expected the toUint256() function to return the number rounded as Uint256. For example: passing 12,3456 I expect to get 12 from toUint256() To get the right result I have to pass my 12,3456 into the toFelt() function and then the toUint256().

    Also we can add what type of rounding we want as param to the function.

    Best,

    opened by FabienCoutant 0
  • Function for converting oracles

    Function for converting oracles

    Starknet oracles (Empiric network, Stork etc.) provide prices of assets multiplied by 10^18. This can present a challenge when we want to end with price multiplied by 2**61 instead, due to overflow etc. For this reason, I'd like to add a function that manages to convert such prices to the Math64x61 format. Tested to 5e-15 precision.

    opened by Chepelau 0
  • Add 'unsafe' versions of each function

    Add 'unsafe' versions of each function

    Math64x61_assert64x61 is expensive! I was able to reduce the step count of a function by close to 60% just by getting rid of that assert where it wasn't necessary (meaning the fixed-point operations were guaranteed to not overflow).

    Of course these should be used very carefully, but I think they'd be a useful addition.

    opened by bllu404 0
Releases(v2.1.0)
Owner
Influence
A grand strategy game set in an asteroid belt and built on Ethereum.
Influence
This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021.

BrightNetworkUK-GCC-2021 This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021. Language used here is py

Dareer Ahmad Mufti 28 May 23, 2022
Collection of functions for working with interlaced content in VapourSynth.

vsfieldkit Collection of functions for working with interlaced content in VapourSynth. It does not have any hard dependencies outside of VapourSynth.

Justin Turner Arthur 11 May 27, 2022
Coderslab Workshop Projects

Workshop Coderslab workshop projects that include: Guessing Game Lotto simulator Guessing Game vol.2 Guessing Game vol.3 Dice 2001 Game Technologies P

Szymon Połczyński 1 Nov 06, 2021
Tutorials for on-ramping to StarkNet

Full-Stack StarkNet Repo containing the code for a short tutorial series I wrote while diving into StarkNet and learning Cairo. Aims to onramp existin

Sam Barnes 71 Dec 07, 2022
Rates how pog a word or user is. Not random and does have *some* kind of algorithm to it.

PogRater :D Rates how pogchamp a word is :D A fun project coded by JBYT27 using Python3 Have you ever wondered how pog a word is? Well, congrats, you

an aspirin 2 Jun 25, 2022
Pokemon catch events project to demonstrate data pipeline on AWS

Pokemon Catches Data Pipeline This is a sample project to practice end-to-end data project; Terraform is used to deploy infrastructure; Kafka is the t

Vitor Carra 4 Sep 03, 2021
A Brainfuck interpreter written in Python.

A Brainfuck interpreter written in Python.

Ethan Evans 1 Dec 05, 2021
Custom python interface to xstan (a modified (cmd)stan)

Custom python interface to xstan (a modified (cmd)stan) Use at your own risk, currently everything is very brittle and will probably be changed in the

2 Dec 16, 2021
This repository contains a lot of short scripting programs implemented both in Python (Flask) and TypeScript (NodeJS).

fast-scripts This repository contains a lot of short scripting programs implemented both in Python (Flask) and TypeScript (NodeJS). In python These wi

Nahum Maurice 3 Dec 10, 2022
An interactive course to git

OperatorEquals' Sandbox Git Course! Preface This Git course is an ongoing project containing use cases that I've met (and still meet) while working in

John Torakis 62 Sep 19, 2022
Repo contains Python Code Reference to learn Python in a week, It also contains Machine Learning Algorithms and some examples for Practice, Also contains MySql, Tableau etc

DataScience_ML_and_Python Repo contains Python Code Reference to learn Python in a week, It also contains Machine Learning Algorithms and some example

Meerabo D Shah 1 Jan 17, 2022
Lookup for interesting stuff in SMB shares

SMBSR - what is that? Well, SMBSR is a python script which given a CIDR/IP/IP_file/HOSTNAME(s) enumerates all the SMB services listening (445) among t

Vincenzo 112 Dec 15, 2022
This python application let you check for new announcements from MMLS, take attendance while your lecturer is sharing QR Code on the screen.

This python application let you check for new announcements from MMLS, take attendance while your lecturer is sharing QR Code on the screen.

wyhong3103 5 Jul 17, 2022
Compiler Final Project - Lisp Interpreter

Compiler Final Project - Lisp Interpreter

2 Jan 23, 2022
A webdav demo using a virtual filesystem that serves a random status of whether a cat in a box is dead or alive.

A webdav demo using a virtual filesystem that serves a random status of whether a cat in a box is dead or alive.

Marshall Conover 2 Jan 12, 2022
Demo code for "Logs in distributed systems" webinar

Hexlet Logs Demo Пререквизиты docker-compose python3 Учетка в DataDog Базовое понимание, что такое логи (можно почитать гайд

Anton Markelov 1 Dec 01, 2021
A web UI for managing your 351ELEC device ROMs.

351ELEC WebUI A web UI for managing your 351ELEC device ROMs. Requirements Python 3 or Python 2.7 are required. If the ftfy package is installed, it w

Ben Phelps 5 Sep 26, 2022
My collection of mini-projects in various languages

Mini-Projects My collection of mini-projects in various languages About: This repository consists of a number of small projects. Most of these "mini-p

Siddhant Attavar 1 Jul 11, 2022
A repo to record how I prepare my Interview, and really hope it can help you as well. Really appreciate Kieran's help in the pattern's part.

Project Overview The purpose of this repo is to help others to find solutions and explaintion I will commit a solution and explanation to every proble

Vincent Zhenhao ZHAO 1 Nov 29, 2021
Free APN For Python

Free APN For Python

XENZI GANZZ 4 Apr 22, 2022