SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Related tags

Deep LearningSSD
Overview

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Pdf: https://openreview.net/forum?id=v5gjXpmR8J

Code for our ICLR 2021 paper on outlier detection, titled SSD, without requiring class labels of in-distribution training data. We leverage recent advances in self-supervised representation learning followed by the cluster-based outlier detection to achieve competitive performance. This repository support both self-supervised training of networks and outlier detection evaluation of pre-trained networks. It also includes code for the two proposed extensions in the paper, i.e., 1) Few-shot outlier detection and 2) Extending SSD by including class labels, when available.

Getting started

Let's start by installing all dependencies.

pip install -r requirement.txt

Outlier detection with a pre-trained classifier

This is how we can evaluate the performance of a pre-trained ResNet50 classifier trained using SimCLR on the CIFAR-10 dataset.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --exp-name name_of_this_experiment

  • training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose the right network modules for the checkpoint.
  • arch: Choose from available architectures in models.py
  • dataset: Choose from ("cifar10", "cifar100", "svhn", "stl")
  • --normalize: If set, it will normalize input images. Use only if inputs were normalized in training too.
  • --exp-name: Experiment name. We will log results into a text file of this name.

The steps to evaluate with $SSD_k$ are exactly the same, except that now you have to also provide values for k and copies . k refers to how many outliers are available from each class of targeted OOD datasets while copies refers to the number of transformed instances created per available outlier image.

CUDA_VISIBLE_DEVICES=$gpu_id python -u eval_ssdk.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --k 5 --copies 10

Training a classifier using self-supervised/supervised learning

We also support training a classifier using self-supervised, supervised or a combination of both training methods. Here is an example script to train a ResNet50 network on the CIFAR-10 dataset using SimCLR.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u train.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --results-dir directory_to_save_checkpoint --exp-name name_of_this_experiment --warmup --normalize

  • --training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose appropriate network modules, loss functions, and trainers.
  • --warmup: We recommend using warmup when batch-size is large, which is often the case for self-supervised methods.

Choices for other arguments are similar to what we mentioned earlier in the evaluation section.

Reference

If you find this work helpful, consider citing it.

@inproceedings{sehwag2021ssd,
  title={SSD:  A Unified Framework for Self-Supervised Outlier Detection},
  author={Vikash Sehwag and Mung Chiang and Prateek Mittal},
 booktitle={International Conference on Learning Representations},
 year={2021},
 url={https://openreview.net/forum?id=v5gjXpmR8J}
}
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022