IOT: Instance-wise Layer Reordering for Transformer Structures

Related tags

Deep LearningIOT
Overview

Introduction

This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wise Layer Reordering for Transformer Structures.

If you find this work helpful in your research, please cite as:

@inproceedings{
zhu2021iot,
title={{\{}IOT{\}}: Instance-wise Layer Reordering for Transformer Structures},
author={Jinhua Zhu and Lijun Wu and Yingce Xia and Shufang Xie and Tao Qin and Wengang Zhou and Houqiang Li and Tie-Yan Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=ipUPfYxWZvM}
}

Requirements and Installation

  • PyTorch version == 1.0.0
  • Python version >= 3.5

To install IOT:

git clone https://github.com/instance-wise-ordered-transformer/IOT
cd IOT
pip install --editable .

Getting Started

Take IWSLT14 De-En translation as an example.

Data Preprocessing

cd examples/translation/
bash prepare-iwslt14.sh
cd ../..

TEXT=examples/translation/iwslt14.tokenized.de-en
python preprocess.py --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en --joined-dictionary

Training

Encoder order is set to be the default one without reordering (ENCODER_MAX_ORDER=1), since the paper finds that both reordering encoder and decoder is not good as reordering decoder only.

#!/bin/bash
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}
mkdir -p ${SAVE_DIR}

python -u train.py data-bin/iwslt14.tokenized.de-en -a transformer_iwslt_de_en \
--optimizer adam --lr 0.0005 -s de -t en --label-smoothing 0.1 --dropout 0.3 --max-tokens 4000 \
--min-lr 1e-09 --lr-scheduler inverse_sqrt --weight-decay 0.0001 --criterion label_smoothed_cross_entropy \
--max-update 100000 --warmup-updates 4000 --warmup-init-lr 1e-07 --adam-betas '(0.9,0.98)' \
--save-dir $SAVE_DIR --share-all-embeddings  --gs-clamp --decoder-orders $DECODER_ORDER  \
--encoder-max-order $ENCODER_MAX_ORDER  --decoder-max-order $DECODER_MAX_ORDER  --diversity $DIVERSITY \
--gumbel-softmax-max $GS_MAX  --gumbel-softmax-min $GS_MIN --gumbel-softmax-tau-r $GS_R  --gumbel-softmax-update-freq $GS_UF \
--kl $KL --clamp-value $CLAMPVAL | tee -a ${SAVE_DIR}/train.log

Evaluation

#!/bin/bash
set -x
set -e

pip install -e . --user
export CUDA_VISIBLE_DEVICES=${1:-0}
nvidia-smi

ENCODER_MAX_ORDER=1
DECODER_MAX_ORDER=3
DECODER_ORDER="0 3 5"
DIVERSITY=0.1
GS_MAX=20
GS_MIN=2
GS_R=0
GS_UF=5000
KL=0.01
CLAMPVAL=0.05

DECODER_ORDER_NAME=`echo $DECODER_ORDER | sed 's/ //g'`
SAVE_DIR=checkpoints/dec_${DECODER_MAX_ORDER}_order_${DECODER_ORDER_NAME}_div_${DIVERSITY}_gsmax_${GS_MAX}_gsmin_${GS_MIN}_gsr_${GS_R}_gsuf_${GS_UF}_kl_${KL}_clampval_${CLAMPVAL}

python generate.py data-bin/iwslt14.tokenized.de-en \
  --path $SAVE_DIR/checkpint_best.pt \
  --batch-size 128 --beam 5 --remove-bpe --quiet --num-ckts $DECODER_MAX_ORDER 
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022