Code repository for "Free View Synthesis", ECCV 2020.

Overview

Free View Synthesis

Code repository for "Free View Synthesis", ECCV 2020.

Setup

Install the following Python packages in your Python environment

- numpy (1.19.1)
- scikit-image (0.15.0)
- pillow (7.2.0)
- pytorch (1.6.0)
- torchvision (0.7.0)

Clone the repository and initialize the submodule

git clone https://github.com/intel-isl/FreeViewSynthesis.git
cd FreeViewSynthesis
git submodule update --init --recursive

Finally, build the Python extension needed for preprocessing

cd ext/preprocess
cmake -DCMAKE_BUILD_TYPE=Release .
make 

Tested with Ubuntu 18.04 and macOS Catalina. If you do not have a C++17 compatible compiler, you can change the code as descibed here.

Run Free View Synthesis

Make sure you adapted the paths in config.py to point to the downloaded data!

You can download the pre-trained models here

# in FreeViewSynthesis directory
wget https://storage.googleapis.com/isl-datasets/FreeViewSynthesis/experiments.tar.gz
tar xvzf experiments.tar.gz
# there should now be net*params files in exp/experiments/*/

Then run the evaluation via

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd eval --iter last --eval-dsets tat-subseq --eval-scale 0.5

This will run the pretrained network on the four Tanks and Temples sequences.

To train the network from scratch you can run

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd retrain

Data

We provide the preprocessed Tanks and Temples dataset as we used it for training and evaluation here. Our new recordings can be downloaded in a preprocessed version from here.

We used COLMAP for camera registration, multi-view stereo and surface reconstruction on full resolution. The packages above contain the already undistorted and registered images. In addition, we provide the estimated camera calibrations, rendered depthmaps used for warping, and closest source image information.

In more detail, a single folder ibr3d_*_scale (where scale is the scale factor with respect to the original images) contains:

  • im_XXXXXXXX.[png|jpg] the downsampled images used as source images, or as target images.
  • dm_XXXXXXXX.npy the rendered depthmaps based on the COLMAP surface reconstruction.
  • Ks.npy contains the 3x3 intrinsic camera matrices, where Ks[idx] corresponds to the depth map dm_{idx:08d}.npy.
  • Rs.npy contains the 3x3 rotation matrices from the world coordinate system to camera coordinate system.
  • ts.npy contains the 3 translation vectors from the world coordinate system to camera coordinate system.
  • count_XXXXXXXX.npy contains the overlap information from target images to source images. I.e., the number of pixels that can be mapped from the target image to the individual source images. np.argsort(np.load('count_00000000.npy'))[::-1] will give you the sorted indices of the most overlapping source images.

Use np.load to load the numpy files.

We use the Tanks and Temples dataset for training except the following scenes that are used for evaluation.

  • train/Truck [172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196]
  • intermediate/M60 [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
  • intermediate/Playground [221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252]
  • intermediate/Train [174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248]

The numbers below the scene name indicate the indices of the target images that we used for evaluation.

Citation

Please cite our paper if you find this work useful.

@inproceedings{Riegler2020FVS,
  title={Free View Synthesis},
  author={Riegler, Gernot and Koltun, Vladlen},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Video

Free View Synthesis Video

Owner
Intelligent Systems Lab Org
Intelligent Systems Lab Org
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022