Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Overview

Neural Architecture Search for Spiking Neural Networks

Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https://arxiv.org/abs/2201.10355)

For getting knowledge on NAS without training in ANN domain (refer: https://github.com/BayesWatch/nas-without-training)

Prerequisites

  • Python 3.9
  • PyTorch 1.10.0
  • NVIDIA GPU (>= 12GB)
  • CUDA 10.2 (optional)

Getting Started

Conda Environment Setting

conda create -n SNASNet 
conda activate SNASNet
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install scipy

Spikingjelly Installation (ref: https://github.com/fangwei123456/spikingjelly)

git clone https://github.com/fangwei123456/spikingjelly.git
cd spikingjelly
python setup.py install

Training and testing

  • Arguments required for training and testing are contained in ``config.py```
  • Here is an example of running an experiment on CIFAR100
  • (if a user want to skip search process and use predefined architecgtur) A architecture can be parsed by --cnt_mat 0302 0030 3003 0000 format

Example) Architecture and the corresponding connection matrix

Training

  • Run the following command
python search_snn.py  --exp_name 'cifar100_backward' --dataset 'cifar100'  --celltype 'backward' --batch_size 32 --num_search 5000 

simple argument instruction

--exp_name: savefile name

--dataset: dataset for experiment

--celltype: find backward connections or forward connections

--num_search: number of architecture candidates for searching

Testing (on pretrained model)

  • As a first step, download pretrained parameters (link) to ./savemodel/save_cifar100_bw.pth.tar
  • The above pretrained model is for CIFAR100 / architecture --cnt_mat 0302 0030 3003 0000

  • Run the following command

python search_snn.py  --dataset 'cifar100' --cnt_mat 0302 0030 3003 0000 --savemodel_pth './savemodel/save_cifar100_bw.pth.tar'  --celltype 'backward'
Owner
Intelligent Computing Lab at Yale University
Intelligent Computing Lab at Yale University
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022