source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

Overview

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval

This repository contains source code and pre-trained/fine-tuned checkpoints for NAACL 2021 paper "LightningDOT". It currently supports fine-tuning on MSCOCO and Flickr30k. Pre-training code and a demo for FULL MSCOCO retrieval are also available.

Overview of LightningDot

Some code in this repo is copied/modifed from UNITER and DPR.

If you find the code useful for your research, please consider citing:

    @inproceedings{sun2021lightningdot,
    title={LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval},
    author={Sun, Siqi and Chen, Yen-Chun and Li, Linjie and Wang, Shuohang and Fang, Yuwei and Liu, Jingjing},
    booktitle={NAACL-HLT},
    year={2021}
    } 

UNITER Environment

To run UNITER for re-ranker, please set a seperate environment based on this repo.

All pre-training and fine-tuning are using a conda environment that can be created as follows.

Environment

Under the project home folder, first run (depends on your CUDA version)

conda env create -f DVL.yml
conda activate DVL
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

, then install apex by

cd ../
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

In order to use distributed training, under super user, install mpi by

rm -r /usr/local/mpi

wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.4.tar.gz 
tar -xvf openmpi-4.0.4.tar.gz 
cd openmpi-4.0.4
./configure --prefix=/usr/local/mpi --enable-orterun-prefix-by-default --disable-getpwuid --with-verbs
sudo apt-get install libnuma-dev
sudo make -j$(nproc) all && sudo make install
ldconfig

cd -
rm -r openmpi-4.0.4
rm openmpi-4.0.4.tar.gz

export OPENMPI_VERSION=4.0.4

. Finally install horovod by

echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64 /" \
    > /etc/apt/sources.list.d/nvidia-ml.list
apt update
apt install libnccl2=2.4.7-1+cuda10.1 libnccl-dev=2.4.7-1+cuda10.1

export PATH=/usr/local/mpi/bin:$PATH
HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod
ldconfig

If you see Error Msg: /usr/bin/ld: cannot find -lnuma, then try

sudo apt-get install libnuma-dev

Download Checkpoints and Meta file

Under project home folder, run

bash bash/download_data.sh

Currently the raw image files and extracted features are not available to download.

Pre-training

Modify the config file at ./config/pretrain-alldata-base.json accordingly, and run

horovodrun -np $NUM_GPU python pretrain.py --config ./config/pretrain-alldata-base.json

. Typically you need to change img_checkpoint, output_dir, and train/val datasets.

A pre-trained checkpoint is availabe at LightningDot.

The checkpoints for UNITER-base and BERT-base can be obtaind from UNITER-base and BERT-base.

Fine-tuning on MSCOCO and Flickr30k

We provide an sample bash script at ./bash/train_flickr.sh, which we used to search for learning rate.

Two checkpoints that have been already fine-tuned on MSCOCO and Flickr30k are also provided at COCO-FT and Flickr-FT.

Evaluation

Run

python eval_itm.py  your_eval_config.json  your_checkpoint.pt 

to run the evaluation. We provide three examples that could be obtained solely based on checkpoints and configurations provided in this repo.

Note that your results may NOT be exactly the same with results below due to different machine/environment configurations (but they should be close enough).

  • Zero-shot evaluation on Flickr30k:
python eval_itm.py ./config/flickr30k_eval_config.json ./data/model/LightningDot.pt
image retrieval recall = {1: 0.5332, 5: 0.8058, 10: 0.8804}
txt retrieval recall = {1: 0.682, 5: 0.891, 10: 0.94}.
  • Fine-tune on flickr, evaluate on flickr:
python eval_itm.py ./config/flickr30k_eval_config.json ./data/model/flickr-ft.pt
image retrieval recall = {1: 0.699, 5: 0.911, 10: 0.9518}
txt retrieval recall = {1: 0.839, 5: 0.972, 10: 0.986}
  • Fine-tune on MSCOCO, evaluate on MSCOCO:
python eval_itm.py ./config/coco_eval_config.json ./data/model/coco-ft.pt
image retrieval recall = {1: 0.4577, 5: 0.7453, 10: 0.8379}
txt retrieval recall = {1: 0.6004, 5: 0.8516, 10: 0.9172}

Meta File

You may need the meta file used in some scripts, which can be obtained from MSCOCO-Meta and Flickr-Meta.

Demo

TODO

Re-Ranking

Note that Re-ranker is using prediction file generated from UNITER or OSCAR due to use of different pytorch version.

Re-ranking script is currently provided as is, and has not been cleaned yet.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

License

MIT

Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021