[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

Related tags

Deep LearningArSSR
Overview

ArSSR

This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation" [ArXiv].

pipline

Figure 1: Oveview of the ArSSR model.

Abstract

High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales. All the NIFTI data about Figure 2 can be downloaded in LR image, 2x SR result, 3.2x SR result, 4x SR result.

example

Figure 2: An example of the SISR tasks of three different isotropic up-sampling scales k={2, 3.2, 4} for a 3D brain MR image by the single ArSSR model.


1. Running Environment

  • python 3.7.9
  • pytorch-gpu 1.8.1
  • tensorboard 2.6.0
  • SimpleITK, tqdm, numpy, scipy, skimage

2. Pre-trained Models

In the pre_trained_models folder, we provide the three pre-trained ArSSR models (with three difference encoder networks) on HCP-1200 dataset. You can improve the resolution of your images thourgh the following commands:

python test.py -input_path [input_path] \
               -output_path [output_path] \
               -encoder_name [RDN, ResCNN, or SRResNet] \
               -pre_trained_model [pre_trained_model]
               -scale [scale] \
               -is_gpu [is_gpu] \
               -gpu [gpu]

where,

  • input_path is the path of LR input image, it should be not contain the input finename.

  • output_path is the path of outputs, it should be not contain the output finename.

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.

  • pre_trained_model is the full-path of pre-trained ArSSR model (e.g, for ArSSR model with RDB encoder network: ./pre_trained_models/ArSSR_RDN.pkl).

  • !!! Note that here encoder_name and pre_trained_model have to be matched. E.g., if you use the ArSSR model with ResCNN encoder network, encoder_name should be ResCNN and pre_trained_model should be ./pre_trained_models/ArSSR_ResCNN.pkl

  • scale is up-sampling scale k, it can be int or float.

  • is_gpu is the identification of whether to use GPU (0->CPU, 1->GPU).

  • gpu is the numer of GPU.

3. Training from Scratch

3.1. Data

In our experiment, we train the ArSSR model on the HCP-1200 Dataset. In particular, the HCP-1200 dataset is split into three parts: 780 training set, 111 validation set, and 222 testing set. More details about the HCP-1200 can be found in our manuscript [ArXiv]. And you can download the pre-processed training set and validation set [Google Drive].

3.2. Training

By using the pre-processed trainning set and validationset by ourselves from [Google Drive], the pipline of training the ArSSR model can be divided into three steps:

  1. unzip the downloaed file data.zip.
  2. put the data in ArSSR directory.
  3. run the following command.
python train.py -encoder_name [encoder_name] \
                -decoder_depth [decoder_depth]	\
                -decoder_width [decoder_width] \
                -feature_dim [feature_dim] \
                -hr_data_train [hr_data_train] \
                -hr_data_val [hr_data_val] \
                -lr [lr] \
                -lr_decay_epoch [lr_decay_epoch] \
                -epoch [epoch] \
                -summary_epoch [summary_epoch] \
                -bs [bs] \
                -ss [ss] \
                -gpu [gpu]

where,

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.
  • decoder_depth is the depth of the decoder network (default=8).
  • decoder_width is the width of the decoder network (default=256).
  • feature_dim is the dimension size of the feature vector (default=128)
  • hr_data_train is the file path of HR patches for training (if you use our pre-processd data, this item can be ignored).
  • hr_data_val is the file path of HR patches for validation (if you use our pre-processd data, this item can be ignored).
  • lr is the initial learning rate (default=1e-4).
  • lr_decay_epoch is learning rate multiply by 0.5 per some epochs (default=200).
  • epoch is the total number of epochs for training (default=2500).
  • summary_epoch is the current model will be saved per some epochs (default=200).
  • bs is the number of LR-HR patch pairs, i.e., N in Equ. 3 (default=15).
  • ss is the number of sampled voxel coordinates, i.e., K in Equ. 3 (default=8000).
  • gpu is the number of GPU.

4. Citation

If you find our work useful in your research, please cite:

@misc{wu2021arbitrary,
      title={An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation}, 
      author={Qing Wu and Yuwei Li and Yawen Sun and Yan Zhou and Hongjiang Wei and Jingyi Yu and Yuyao Zhang},
      year={2021},
      eprint={2110.14476},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}
Owner
Qing Wu
Qing Wu
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022