This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Overview

Skeleton Aware Multi-modal Sign Language Recognition

By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu.

Smile Lab @ Northeastern University

Python 3.7 Packagist Last Commit License: CC0 4.0 PWC


This repo contains the official code of Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR) that ranked 1st in CVPR 2021 Challenge: Looking at People Large Scale Signer Independent Isolated Sign Language Recognition.

Our paper has been accepted to CVPR21 Workshop. A preprint version is available on arXiv. Please cite our paper if you find this repo useful in your research.

News

[2021/04/10] Our workshop paper has been accepted. Citation info updated.

[2021/03/24] A preprint version of our paper is released here.

[2021/03/20] Our work has been verified and announced by the organizers as the 1st place winner of the challenge!

[2021/03/15] The code is released to public on GitHub.

[2021/03/11] Our team (smilelab2021) ranked 1st in both tracks and here are the links to the leaderboards:

Table of Contents

Data Preparation

Download AUTSL Dataset.

We processed the dataset into six modalities in total: skeleton, skeleton features, rgb frames, flow color, hha and flow depth.

  1. Please put original train, val, test videos in data folder as
    data
    ├── train
    │   ├── signer0_sample1_color.mp4
    │   ├── signer0_sample1_depth.mp4
    │   ├── signer0_sample2_color.mp4
    │   ├── signer0_sample2_depth.mp4
    │   └── ...
    ├── val
    │   └── ...
    └── test
        └── ...
  1. Follow the data_processs/readme.md to process the data.

  2. Use TPose/data_process to extract wholebody pose features.

Requirements and Docker Image

The code is written using Anaconda Python >= 3.6 and Pytorch 1.7 with OpenCV.

Detailed enviroment requirment can be found in requirement.txt in each code folder.

For convenience, we provide a Nvidia docker image to run our code.

Download Docker Image

Pretrained Models

We provide pretrained models for all modalities to reproduce our submitted results. Please download them at and put them into corresponding folders.

Download Pretrained Models

Usage

Reproducing the Results Submitted to CVPR21 Challenge

To test our pretrained model, please put them under each code folders and run the test code as instructed below. To ensemble the tested results and reproduce our final submission. Please copy all the results .pkl files to ensemble/ and follow the instruction to ensemble our final outputs.

For a step-by-step instruction, please see reproduce.md.

Skeleton Keypoints

Skeleton modality can be trained, finetuned and tested using the code in SL-GCN/ folder. Please follow the SL-GCN/readme.md instruction to prepare skeleton data into four streams (joint, bone, joint_motion, bone motion).

Basic usage:

python main.py --config /path/to/config/file

To train, finetune and test our models, please change the config path to corresponding config files. Detailed instruction can be found in SL-GCN/readme.md

Skeleton Feature

For the skeleton feature, we propose a Separable Spatial-Temporal Convolution Network (SSTCN) to capture spatio-temporal information from those features.

Please follow the instruction in SSTCN/readme.txt to prepare the data, train and test the model.

RGB Frames

The RGB frames modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_clip.py

python Sign_Isolated_Conv3D_clip_finetune.py

python Sign_Isolated_Conv3D_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Optical Flow

The RGB optical flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_flow_clip.py

python Sign_Isolated_Conv3D_flow_clip_funtine.py

python Sign_Isolated_Conv3D_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth HHA

The Depth HHA modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_hha_clip_mask.py

python Sign_Isolated_Conv3D_hha_clip_mask_finetune.py

python Sign_Isolated_Conv3D_hha_clip_mask_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth Flow

The Depth Flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_depth_flow_clip.py

python Sign_Isolated_Conv3D_depth_flow_clip_finetune.py

python Sign_Isolated_Conv3D_depth_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Model Ensemble

For both RGB and RGBD track, the tested results of all modalities need to be ensemble together to generate the final results.

  1. For RGB track, we use the results from skeleton, skeleton feature, rgb, and flow color modalities to ensemble the final results.

    a. Test the model using newly trained weights or provided pretrained weights.

    b. Copy all the test results to ensemble folder and rename them as their modality names.

    c. Ensemble SL-GCN results from joint, bone, joint motion, bone motion streams in gcn/ .

     python ensemble_wo_val.py; python ensemble_finetune.py
    

    c. Copy test_gcn_w_val_finetune.pkl to ensemble/. Copy RGB, TPose and optical flow results to ensemble/. Ensemble final prediction.

     python ensemble_multimodal_rgb.py
    

    Final predictions are saved in predictions.csv

  2. For RGBD track, we use the results from skeleton, skeleton feature, rgb, flow color, hha and flow depth modalities to ensemble the final results. a. copy hha and flow depth modalities to ensemble/ folder, then

     python ensemble_multimodal_rgb.py
    

To reproduce our results in CVPR21Challenge, we provide .pkl files to ensemble and obtain our final submitted predictions. Detailed instruction can be find in ensemble/readme.md

License

Licensed under the Creative Commons Zero v1.0 Universal license with the following exceptions:

  • The code is released for academic research use only. Commercial use is prohibited.
  • Published versions (changed or unchanged) must include a reference to the origin of the code.

Citation

If you find this project useful in your research, please cite our paper

@inproceedings{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2021}
}

@article{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  journal={arXiv preprint arXiv:2103.08833},
  year={2021}
}

Reference

https://github.com/Sun1992/SSTCN-for-SLR

https://github.com/jin-s13/COCO-WholeBody

https://github.com/open-mmlab/mmpose

https://github.com/0aqz0/SLR

https://github.com/kchengiva/DecoupleGCN-DropGraph

https://github.com/HRNet/HRNet-Human-Pose-Estimation

https://github.com/charlesCXK/Depth2HHA

Owner
Isen (Songyao Jiang)
Isen (Songyao Jiang)
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022