An end-to-end implementation of intent prediction with Metaflow and other cool tools

Overview

You Don't Need a Bigger Boat

An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn to do other stuff good too.

This is a WIP - check back often for updates.

Philosophical Motivations

There is plenty of tutorials and blog posts around the Internet on data pipelines and tooling. However:

  • they (for good pedagogical reasons) tend to focus on one tool / step at a time, leaving us to wonder how the rest of the pipeline works;
  • they (for good pedagogical reasons) tend to work in a toy-world fashion, leaving us to wonder what would happen when a real dataset and a real-world problem enter the scene.

This repository (and soon-to-be-drafted written tutorial) aims to fill these gaps. In particular:

  • we provide open-source working code that glues together what we believe are some of the best tools in the ecosystem, going all the way from raw data to a deployed endpoint serving predictions;
  • we run the pipeline under a realistic load for companies at "reasonable scale", leveraging a huge open dataset we released in 2021; moreover, we train a model for a real-world use case, and show how to monitor it after deployment.

The repo may also be seen as a (very opinionated) introduction to modern, PaaS-like pipelines; while there is obviously room for disagreement over tool X or tool Y, we believe the general principles to be sound for companies at "reasonable scale": in-between bare-bone infrastructure for Tech Giants, and ready-made solutions for low-code/simple scenarios, there is a world of exciting machine learning at scale for sophisticated practitioners who don't want to waste their time managing cloud resources.

Overview

The repo shows how several (mostly open-source) tools can be effectively combined together to run data pipelines. The project current features:

The following picture from our Recsys paper (forthcoming) gives a quick overview of such a pipeline:

Recsys flow

We provide two versions of the pipeline, depending on the sophistication of the setup:

  • a Metaflow-only version, which runs from static data files (see below) to Sagemaker as a single Flow, and can be run from a Metaflow-enabled laptop without much additional setup;
  • a data warehouse version, which runs in a more realistic setup, reading data from Snowflake and using an external orchestrator to run the steps. In this setup, the downside is that a Snowflake and a Prefect Cloud accounts are required (nonetheless, both are veasy to get); the upside is that the pipeline reflects almost perfectly a real setup, and Metaflow can be used specifically for the ML part of the process.

The parallelism between the two scenarios should be pretty clear by looking at the two projects: if you are familiarizing with all the tools for the first time, we suggest you to start from the Metaflow version and then move to the full-scale one when all the pieces of the puzzle are well understood.

Relevant Material

If you want to know more, you can give a look at the following material:

TBC

Status Update

July 2021

End-2-end flow working for remote and local projects; started standardizing Prefect agents with Docker and adding other services (monitoring, feature store etc.).

TO-DOs:

  • dockerize the local flow;
  • write-up all of this as a blog post;
  • improve code / readability / docs, add potentially some more pics and some videos;
  • providing an orchestrator-free version, by using step functions to manage the steps;
  • finish feature store and gantry integration;
  • add Github Action flow;
  • continue improving the DAG card project.

Setup

General Prerequisites (do this first!)

Irrespectively of the flow you wish to run, some general tools need to be in place: Metaflow of course, as the heart of our ML practice, but also data and AWS users/roles. Please go through the general items below before tackling the flow-specific instructions.

After you finish the prerequisites below, you can run the flow you desire: each folder - remote and local - contains a specific README which should allow you to quickly run the project end-to-end: please refer to that documentation for flow-specific instructions (check back often for updates).

Dataset

The project leverages the open dataset from the 2021 Coveo Data Challenge: the dataset can be downloaded directly from here (refer to the full README for terms and conditions). Data is freely available under a research-friendly license - for background information on the dataset, the use cases and relevant work in the ML literature, please refer to the accompanying paper.

Once you download and unzip the dataset in a local folder of your choice (the zip contains 3 files, browsing_train.csv, search_train.csv, sku_to_content.csv), write down their location as an absolute path (e.g. /Users/jacopo/Documents/data/train/browsing_train.csv): both projects need to know where the dataset is.

AWS

Both projects - remote and local - use AWS services extensively - and by design: this ties back to our philosophy of PaaS-whenever-possible, and play nicely with our core adoption of Metaflow. While you can setup your users in many functionally equivalent ways, note that if you want to run the pipeline from ingestion to serving you need to be comfortable with the following AWS interactions:

  • Metaflow stack (see below): we assume you installed the Metaflow stack and can run it with an AWS profile of your choice;
  • Serverless stack (see below): we assume you can run serverless deploy in your AWS stack;
  • Sagemaker user: we assume you have an AWS user with permissions to manage Sagemaker endpoints (it may be totally distinct from any other Metaflow user).

TBC

Serverless

We wrap Sagemaker predictions in a serverless REST endpoint provided by AWS Lambda and API Gateway. To manage the lambda stack we use Serverless as a wrapper around AWS infrastructure.

TBC

Metaflow

Metaflow: Configuration

If you have an AWS profile configured with a metaflow-friendly user, and you created metaflow stack with CloudFormation, you can run the following command with the resources created by CloudFormation to set up metaflow on AWS:

metaflow configure aws --profile metaflow

Remember to use METAFLOW_PROFILE=metaflow to use this profile when running a flow. Once you completed the setup, you can run flow_playground.py to test the AWS setup is working as expected (in particular, GPU batch jobs can run correctly). To run the flow with the custom profile created, you should do:

METAFLOW_PROFILE=metaflow python flow_playground.py run

Metaflow: Tips & Tricks
  1. Parallelism Safe Guard
    • The flag --max-workers should be used to limit the maximum number of parallel steps
    • For example METAFLOW_PROFILE=metaflow python flow_playground.py run --max-workers 8 limits the maximum number of parallel tasks to 8
  2. Environment Variables in AWS Batch
    • The @environment decorator is used in conjunction with @batch to pass environment variables to AWS Batch, which will not directly have access to env variables on your local machine
    • In the local example, we use @environemnt to pass the Weights & Biases API Key (amongst other things)
  3. Resuming Flows
    • Resuming flows is useful during development to avoid re-running compute/time intensive steps such as data preparation
    • METAFLOW_PROFILE=metaflow python flow_playground.py resume <STEP_NAME> --origin-run-id <RUN_ID>
  4. Local-Only execution
    • It may sometimes be useful to debug locally (i.e to avoid Batch startup latency), we introduce a wrapper enable_decorator around the @batch decorator which enables or disables a decorator's functionality
    • We use this in conjunction with an environment variable EN_BATCH to toggle the functionality of all @batch decorators.

FAQ

  1. Both projects deal with data that has already been ingested/transmitted to the pipeline, but are silent on data collection. Any serverless option there as well?

    Yes. In e-commerce use cases, for example, pixel tracking is standard (e.g. Google Analytics), so a serverless /collect endpoint can be used to get front-end data and drop it in a pure PaaS pipeline with Firehose and Snowpipe, for example. While a bit out-dated for some details, we championed exactly this approach a while ago: if you want to know more, you can start from this Medium post and old code.

TBC

How to Cite our Work

If you find our principles, code or data useful, please cite our work:

Paper (forthcoming in RecSys2021)

@inproceedings{10.1145/3460231.3474604,
author = {Tagliabue, Jacopo},
title = {You Do Not Need a Bigger Boat: Recommendations at Reasonable Scale in a (Mostly) Serverless and Open Stack},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474604},
doi = {10.1145/3460231.3474604},
series = {RecSys '21}
}

Data

@inproceedings{CoveoSIGIR2021,
author = {Tagliabue, Jacopo and Greco, Ciro and Roy, Jean-Francis and Bianchi, Federico and Cassani, Giovanni and Yu, Bingqing and Chia, Patrick John},
title = {SIGIR 2021 E-Commerce Workshop Data Challenge},
year = {2021},
booktitle = {SIGIR eCom 2021}
}
Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022