TextureGAN in Pytorch

Overview

TextureGAN

This code is our PyTorch implementation of TextureGAN [Project] [Arxiv]

TextureGAN is a generative adversarial network conditioned on sketch and colors/textures. Users “drag” one or more example textures onto sketched objects and the network realistically applies these textures to the indicated objects.

Setup

Prerequisites

  • Linux or OSX
  • Python 2.7
  • NVIDIA GPU + CUDA CuDNN

Dependency

  • Visdom
  • Ipython notebook
  • Pytorch 0.2 (torch and torchvision)
  • Numpy scikit-image matplotlib etc.

Getting Started

  • Clone this repo
git clone [email protected]:janesjanes/texturegan.git
cd texturegan
  • Prepare Datasets Download the training data:
wget https://s3-us-west-2.amazonaws.com/texturegan/training_handbag.tar.gz
tar -xvcf training_handbag.tar.gz

For shoe: https://s3-us-west-2.amazonaws.com/texturegan/training_shoe.tar.gz

For cloth: https://s3-us-west-2.amazonaws.com/texturegan/training_cloth.tar.gz

  • Train the model from scratch. See python main.py --help for training options. Example arguments (see the paper for the exact parameters value):
python main.py --display_port 7779 --gpu 3 --model texturegan --feature_weight 5e3 --pixel_weight_ab 1e4 
--global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 --discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch 100000 --save_dir [./save_dir] 
--data_path [training_handbags_pretrain/] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 
--patch_size_max 50 --num_input_texture_patch 1 --visualize_every 5 --num_local_texture_patch 5

Models will be saved to ./save_dir

See more training details in section Train

You can also load our pretrained models in section Download Models.

To view results and losses as the model trains, start a visdom server for the ‘display_port’

python -m visdom.server -port 7779

Test the model

  • See our Ipython Notebook Test_script.ipynb

Train

TextureGAN proposes a two-stage training scheme.

  • The first training state is ground-truth pre-training. We extract input edge and texture patch from the same ground-truth image. Here, we show how to train the ground-truth pretrained model using a combination of pixel loss, color loss, feature loss, and adverserial loss.
python main.py --display_port 7779 --gpu 0 --model texturegan --feature_weight 10 --pixel_weight_ab 1e5 
--global_pixel_weight_l 100 --style_weight 0 --discriminator_weight 10 --learning_rate 1e-3 --learning_rate_D 1e-4 --save_dir
[/home/psangkloy3/handbag_texturedis_scratch] --data_path [./save_dir] --batch_size 16 --save_every 500 --num_epoch 100000 
--input_texture_patch original_image --loss_texture original_image --local_texture_size 50 --discriminator_local_weight 100  
--num_input_texture_patch 1
  • The second stage is external texture fine-tuning. This step is important for the network to reproduce textures for which we have no ground-truth output (e.g. a handbag with snakeskin texture). This time, we extract texture patch from an external texture dataset (see more in Section Download Dataset). We keep the feature and adversarial losses unchanged, but modify the pixel and color losses, to compare the generated result with the entire input texture from which input texture patches are extracted. We fine tune on previous pretrained model with addition of local texture loss by training a separate texture discriminator.
python main.py --display_port 7779 --load 1500 --load_D 1500 --load_epoch 222 --gpu 0 --model texturegan --feature_weight 5e3
--pixel_weight_ab 1e4 --global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 
--discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch
100000 --save_dir [skip_leather_handbag/] --load_dir [handbag_texturedis_scratch/] 
--data_path [./save_dir] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 --patch_size_max 50 
--num_input_texture_patch 1 --visualize_every 5 --input_texture_patch dtd_texture --num_local_texture_patch 5

Download Datasets

The datasets we used for generating sketch and image pair in this paper are collected by other researchers. Please cite their papers if you use the data. The dataset is split into train and test set.

Edges are computed by HED edge detector + post-processing. [Citation]

The datasets we used for inputting texture patches are DTD Dataset and leather dataset we collected from the internet.

  • DTD Dataset:
  • Leather Dataset:

Download Models

Pre-trained models

Citation

If you find it this code useful for your research, please cite:

"TextureGAN: Controlling Deep Image Synthesis with Texture Patches"

Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen Fang, Fisher Yu, James Hays in CVPR, 2018.

@article{xian2017texturegan,
  title={Texturegan: Controlling deep image synthesis with texture patches},
  author={Xian, Wenqi and Sangkloy, Patsorn and Agrawal, Varun and Raj, Amit and Lu, Jingwan and Fang, Chen and Yu, Fisher and Hays, James},
  journal={arXiv preprint arXiv:1706.02823},
  year={2017}
}
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022