Make Watson Assistant send messages to your Discord Server

Overview

Make Watson Assistant send messages to your Discord Server

Prerequisites

  1. Sign up for an IBM Cloud account.
  2. Fill in the required information and press the „Create Account“ button.
  3. After you submit your registration, you will receive an e-mail from the IBM Cloud team with details about your account. In this e-mail, you will need to click the link provided to confirm your registration.
  4. Now you should be able to login to your new IBM Cloud account ;-)
  5. Create a Discord account, as well your own Discord server (both are free of charge).

Activate Webhooks in Discord

We want to enable webhooks in our Discord server's settings, which will be used by Watson Assistant to send messages.

  1. Go to your server's settings
  2. Navigate to Integrations
  3. Create a new Webhook, and copy its URL

Note: Discord does not require any additional Authentification, which means that anyone who has the URL can use the Webhook. Ensure that only you, and people you trust have access to it.

Set up your cloud function

Create cloud function

We want to set up a cloud function, which Watson Assistant will be able to access. To do that, you need to go to your IBM Cloud Dashboard, and select Functions.

Alternatively you can click here to access the IBM Cloud functions.

Now you can create a new Action. Give it a sensible name, select python as your runtime, and click create.

Create Cloud Function Action

Paste in the code that can be found here, change the value of discordurl to your URL, and save your changes.

Test cloud function

If you want to test it, you can click on Invoke with parameter, paste in the input below, click apply, and press Invoke.

{
    "content" : "this is a test message sent by your cloud function"
}

If the message was sent successfully, the result should look like this.

Enable as Web Action

Now we need to create an endpoint, which will be used by Watson Assistant to invoce your function.

On the left side, click Endpoints and check the box called Enable as Web Action. Press save, and copy the URL.

Set up your Assistant

Set up Watson Assistant

Go back to your Dashboard, and type Watson Assistant into the search bar. If you already have a Watson Assistant service you can use it, otherwise you can create a free lite version either by clicking Watson Assistant under the Catalog Results Section or following this link.

Create your own Skill

Afterwards launch your Watson Assistant Service, and look for Skills on the left.

If you can't find it, click on the profile icon in the upper right corner, and click Switch to classic experience.

Create a new skill, select Dialog skill and click next. Select Upload skill and provide the skill-Connect-to-Discord.json file.

Enable Webhooks

Before you can test your assistant, you need to provide the cloud funtion's URL.

Click on Options->Webhooks, paste in the URL, and ADD A .json AT THE END.

We could use Discord's webhook link direcly, without adding a .json, and it would send the message as well. However, Discord doesn't return anything (that Watson Assistant can understand), which would prevent us from informing the user of our assistant, that the message was sent correctly.

Test your assistant

Now you can click on the Try it button and test whether the assistant is working correctly.


Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022