Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Overview

KR-BERT-SimCSE

Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Training

Unsupervised

python train_unsupervised.py --mixed_precision

I used Korean Wikipedia Corpus that is divided into sentences in advance. (Check out tfds-korean catalog page for details)

  • Settings
    • KR-BERT character
    • peak learning rate 3e-5
    • batch size 64
    • Total steps: 25,000
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 250 steps
    • max sequence length 64
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Supervised

python train_supervised.py --mixed_precision

I used KorNLI for supervised training. (Check out tfds-korean catalog page)

  • Settings
    • KR-BERT character
    • batch size 128
    • epoch 3
    • peak learning rate 5e-5
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 125 steps
    • max sequence length 48
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Results

KorSTS (dev set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 79.99
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 84.88
SRoBERTa base* unsupervised bi encoding 63.34
SRoBERTa base* trained on KorNLI bi encoding 76.48
SRoBERTa base* trained on KorSTS bi encoding 83.68
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 83.54
SRoBERTa large* trained on KorNLI bi encoding 77.95
SRoBERTa large* trained on KorSTS bi encoding 84.74
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 84.21

KorSTS (test set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 73.25
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 80.72
SRoBERTa base* unsupervised bi encoding 48.96
SRoBERTa base* trained on KorNLI bi encoding 74.19
SRoBERTa base* trained on KorSTS bi encoding 78.94
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 80.29
SRoBERTa large* trained on KorNLI bi encoding 75.46
SRoBERTa large* trained on KorSTS bi encoding 79.55
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 80.49
SRoBERTa base* trained on KorSTS cross encoding 83.00
SRoBERTa large* trained on KorSTS cross encoding 85.27

KLUE STS (dev set results)

model 100 X Pearson's correlation
KR-BERT base
SimCSE
unsupervised bi encoding 74.45
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 79.42
KR-BERT base* supervised cross encoding 87.50

References

@misc{gao2021simcse,
    title={SimCSE: Simple Contrastive Learning of Sentence Embeddings},
    author={Tianyu Gao and Xingcheng Yao and Danqi Chen},
    year={2021},
    eprint={2104.08821},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{ham2020kornli,
    title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
    author={Jiyeon Ham and Yo Joong Choe and Kyubyong Park and Ilji Choi and Hyungjoon Soh},
    year={2020},
    eprint={2004.03289},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Jeong Ukjae
Jeong Ukjae
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022