A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

Overview

tfds-korean

A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다.

Dataset Catalog | pypi

PyPI - License PyPI Test Python

Usage

Installation

pip install tfds-korean

Loading dataset

import tensorflow_datasets as tfds
import tfds_korean.nsmc # register nsmc dataset

ds = tfds.load('nsmc')

train_ds = ds['train'].batch(32)
test_ds = ds['test'].batch(128)

# define model
# ....
# ....

model.fit(train_ds)
model.evaluate(test_ds)

See Dataset Catalog page for dataset list and details of each dataset.

Examples

Licenses

The license for this repository and licenses for datasets are applied separately. It is recommended to use each dataset after checking the dataset's website.

본 레포지토리의 라이선스와 데이터셋의 라이선스는 별도로 적용됩니다. 데이터셋을 사용하기 전 각 데이터셋의 라이선스와 웹 사이트를 확인 후 사용하시길 권해드리며, 본 라이브러리는 데이터셋을 호스팅하거나 배포하지 않는 점을 참고부탁드립니다.

Comments
  • [Dataset Request] sae4k

    [Dataset Request] sae4k

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sae4k
    • Dataset description:
    • Homepage: https://github.com/warnikchow/sae4k
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 2
  • [Dataset Request] namuwiki corpus

    [Dataset Request] namuwiki corpus

    Dataset Information

    • Dataset Name: namuwiki corpus
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/namuwiki-corpus
    • Citation:
    • License:

    Additional Context

    문장 단위 분절해놓은 나무위키 코퍼스

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] korean wikipedia corpus

    [Dataset Request] korean wikipedia corpus

    Dataset Information

    • Dataset Name: 한국어 위키피디아 코퍼스
    • Prefered code name(e.g. korean_chatbot_qa_data): korean_wikipedia_corpus
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/korean-wikipedia-corpus
    • Citation:
    • License:

    Additional Context

    kowikitext도 충분히 좋지만, 문장단위로 사용할 때 불편한 점이 있다. 그래서 문장단위로 이미 나누어진 말뭉치를 한국어 위키피디아 덤프에서 하나 생성. (kss로 분절)

    FeaturesDict({
        'content': Sequence(Text(shape=(), dtype=tf.string)),
        'title': Text(shape=(), dtype=tf.string),
    })
    

    요런식으로 content가 TensorSpec(shape=[None], dtype=tf.string)인 텐서값을 가지도록 만들어주면 distillation이나 문장 단위 unsupervised learning이나 할 때 편할 것 같아요.

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] KLUE

    [Dataset Request] KLUE

    Dataset Information

    • Dataset Name: KLUE
    • Prefered code name(e.g. korean_chatbot_qa_data): klue_dp, klue_mrc, ...
    • Dataset description:
    • Homepage:
    • Citation:
    • License:

    Additional Context

    https://github.com/KLUE-benchmark/KLUE https://arxiv.org/pdf/2105.09680v1.pdf

    • [x] dp @jeongukjae
    • [x] mrc @harrydrippin
    • [x] ner @jeongukjae
    • [x] nli @jeongukjae
    • [x] re @jeongukjae
    • [x] sts @jeongukjae
    • [x] wos @jeongukjae
    • [x] ynat @jeongukjae
    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] namuwikitext

    [Dataset Request] namuwikitext

    Dataset Information

    • Dataset Name: Wikitext format dataset of Namuwiki
    • Prefered code name(e.g. korean_chatbot_qa_data): namuwikitext
    • Dataset description: 나무위키의 덤프 데이터를 바탕을 제작한 wikitext 형식의 텍스트 파일입니다. 학습 및 평가를 위하여 위키페이지 별로 train (99%), dev (0.5%), test (0.5%) 로 나뉘어져있습니다.
    • Homepage: https://github.com/lovit/namuwikitext
    • Citation:

    Additional Context

    https://github.com/lovit/namuwikitext/issues/10

    README에 있는 데이터셋 개수와 맞지 않아 이렇게 이슈 작성을 해놓았는데, 답변은 없는 상황임. 일단 Korpora에 있는 대로 추가해놓고 나중에 다시 수정하는 것이 좋지 않을까

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] KorQuAD

    [Dataset Request] KorQuAD

    Dataset Information

    • Dataset Name: KorQuAD 1.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_10
    • Dataset description: KorQuAD 1.0은 한국어 Machine Reading Comprehension을 위해 만든 데이터셋입니다. 모든 질의에 대한 답변은 해당 Wikipedia article 문단의 일부 하위 영역으로 이루어집니다. Stanford Question Answering Dataset(SQuAD) v1.0과 동일한 방식으로 구성되었습니다.
    • Homepage: https://korquad.github.io/KorQuad%201.0/
    • Citation:

    Dataset Information

    • Dataset Name: KorQuAD 2.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_20
    • Dataset description: KorQuAD 2.0은 KorQuAD 1.0에서 질문답변 20,000+ 쌍을 포함하여 총 100,000+ 쌍으로 구성된 한국어 Machine Reading Comprehension 데이터셋 입니다. KorQuAD 1.0과는 다르게 1~2 문단이 아닌 Wikipedia article 전체에서 답을 찾아야 합니다. 매우 긴 문서들이 있기 때문에 탐색 시간에 대한 고려가 필요할 것 입니다. 또한 표와 리스트도 포함되어 있기 때문에 HTML tag를 통한 문서의 구조 이해도 필요합니다. 이 데이터셋을 통해서 다양한 형태와 길이의 문서들에서도 기계독해가 가능해질 것 입니다.
    • Homepage: https://korquad.github.io
    • Citation:

    Additional Context

    일단은 KorQuAD 1.0만 추가해놓고 2.0은 추후에 추가해도 무방할 듯

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] 한국해양대학교 NER 데이터셋

    [Dataset Request] 한국해양대학교 NER 데이터셋

    Dataset Information

    • Dataset Name: 한국해양대학교 자연언어처리 연구실 NER 데이터셋
    • Prefered code name(e.g. korean_chatbot_qa_data): kmounlp_ner
    • Dataset description: 한국어 개체명 정의 및 표지 표준화 기술보고서와 이를 기반으로 제작된 개체명 형태소 말뭉치
    • Homepage: https://github.com/kmounlp/NER
    • Citation:

    Additional Context

    보고서: https://github.com/kmounlp/NER/blob/master/NER%20Guideline%20(ver%201.0).pdf

    dataset request 
    opened by jeongukjae 1
  • Add CONTRIBUTING.md

    Add CONTRIBUTING.md

    • [ ] 프로젝트에서 사용하는 언어에 대한 설명. 사용법/데이터셋 설명은 가능하면 영어로 적되, 이슈/PR 소통은 한국어로 하는게 좋지 않을까?
    • [ ] 데이터셋 추가하는 법
    • [ ] 이슈/PR/Discussion 간단한 설명
    • [ ] 추가로 같이 관리하고 싶은 분들에 대한 설명
    • [ ] 데이터셋 라이선스에 대한 문제에 대한 설명
    documentation before-release 
    opened by jeongukjae 1
  • 현재 wikitext의 문제점을 카탈로그에 적어두기

    현재 wikitext의 문제점을 카탈로그에 적어두기

    https://github.com/jeongukjae/tfds-korean/issues/12#issuecomment-826358469

    위와 같은 이유로 "필터를 해서 사용해라" 혹은 "중간에 빈 example이 있다" 정도는 적어두는 편이 좋은 듯

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] sci-news-sum-kr-50

    [Dataset Request] sci-news-sum-kr-50

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sci_news_sum_kr_50
    • Dataset description:
    • Homepage: https://github.com/theeluwin/sci-news-sum-kr-50
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kowikitext

    [Dataset Request] kowikitext

    Dataset Information

    • Dataset Name: 한국어 wikitext
    • Prefered code name(e.g. korean_chatbot_qa_data): kowikitext
    • Dataset description: Wikitext format Korean corpus
    • Homepage: https://github.com/lovit/kowikitext
    • Citation:

    Additional Context

    이것도 #12 와 같은 문제점이 존재하는 것으로 보이는데, 일단은 Korpora 방식을 따라감. 이 데이터셋도 heading을 기준으로 split할 경우 = 분류~~~ =같은 행들이 존재하여 정확히 문서 단위로 복구가 불가능함.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] korean_unsmile_dataset

    [Dataset Request] korean_unsmile_dataset

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/smilegate-ai/korean_unsmile_dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • 데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    현재 모든 데이터셋이 로컬에 존재해야 카탈로그를 빌드할 수 있는데, 이게 너무 부담이 된다. 현재 develop 기준만 해도 대략 30GB를 로컬에 들고 있어야 한다.

    데이터셋 버전이 바뀌지 않는다면 카탈로그를 다시 빌드해야하는 때는 build_catalog.py 스크립트가 변경될 때 뿐이라서 특정 데이터셋 페이지 & index 페이지만 빌드해도 되도록 수정해두자. 물론 전체 데이터셋에 대한 카탈로그 빌드도 가능하게 유지.

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] Korean Single Speaker Speech Dataset

    [Dataset Request] Korean Single Speaker Speech Dataset

    Dataset Information

    • Dataset Name: Korean Single Speaker Speech Dataset
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://www.kaggle.com/bryanpark/korean-single-speaker-speech-dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] 세종코퍼스

    [Dataset Request] 세종코퍼스

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sejong_corpus
    • Dataset description:
    • Homepage: https://ithub.korean.go.kr/user/total/database/corpusManager.do
    • Citation:
    • License:

    Additional Context

    세종 코퍼스: https://ithub.korean.go.kr/user/total/database/corpusManager.do 세종 코퍼스 - 병렬: https://ithub.korean.go.kr/user/total/database/etcManager.do

    라이선스가 상업적 이용이 어렵더라도 이용하기에 좋은 말뭉치라 생각해서 일단은 추가하는 게 좋을 것 같아요.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kcbert

    [Dataset Request] kcbert

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): kcbert
    • Dataset description:
    • Homepage: https://github.com/Beomi/KcBERT
    • Citation:

    Additional Context

    이거 추가해두면 엄청 유용하게 쓸 수 있을 것 같다!!

    dataset request 
    opened by jeongukjae 4
  • [Dataset Request] KAIST Corpus

    [Dataset Request] KAIST Corpus

    Dataset Information

    • Dataset Name: kaist corpus
    • Prefered code name(e.g. korean_chatbot_qa_data): kaist_corpus
    • Dataset description:
    • Homepage: http://semanticweb.kaist.ac.kr/home/index.php/KAIST_Corpus
    • Citation:

    Additional Context

    wontfix dataset request 
    opened by jeongukjae 1
Releases(0.4.0)
  • 0.4.0(Sep 19, 2021)

    • Update KLUE dataset to 1.1.0 https://github.com/jeongukjae/tfds-korean/commit/e954ec4550ec5db015d3f93750e6763aca5a9b48
    • Reorder ClassLabel names of NLI datasets. https://github.com/jeongukjae/tfds-korean/commit/be3e8cba7b9d537969b9c08738dd6df36b0145bc
    Source code(tar.gz)
    Source code(zip)
  • 0.3.0(Jun 16, 2021)

    • add korean_wikipedia_corpus (https://jeongukjae.github.io/tfds-korean/datasets/korean_wikipedia_corpus.html)
    • add namuwiki_corpus (https://jeongukjae.github.io/tfds-korean/datasets/namuwiki_corpus.html)
    Source code(tar.gz)
    Source code(zip)
  • 0.2.0(Jun 6, 2021)

    • add KLUE benchmark datasets
    • update dataset catalog (https://github.com/jeongukjae/tfds-korean/commit/eb1c72d0a716aba7326276e77e8e6f94976bb579, https://github.com/jeongukjae/tfds-korean/commit/614616b82d0bbdaecbc4ec50e0cfc67b78b646c2)
    • fix klue_ner supervised key bug (https://github.com/jeongukjae/tfds-korean/commit/10f765f01b9f3952e298395779dcf8efeefde93a)
    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(May 29, 2021)

  • 0.1.2(May 25, 2021)

  • 0.1.1(Apr 30, 2021)

  • 0.1.0(Apr 29, 2021)

    • Add kowikitext and namuwikitext dataset
    • Add missing licenses and bibtex.
    • Add license section in catalog page.
    • Add example links in catalog page.
    Source code(tar.gz)
    Source code(zip)
Owner
Jeong Ukjae
Machine Learning Engineer
Jeong Ukjae
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023