Graph parsing approach to structured sentiment analysis.

Overview

Fine-grained Sentiment Analysis as Dependency Graph Parsing

This repository contains the code and datasets described in following paper: Fine-grained Sentiment Analysis as Dependency Graph Parsing.

Problem description

Fine-grained sentiment analysis can be theoretically cast as an information extraction problem in which one attempts to find all of the opinion tuples $O = O_i,\ldots,O_n$ in a text. Each opinion $O_i$ is a tuple $(h, t, e, p)$

where $h$ is a \textbf {holder} who expresses a \textbf{polarity} $p$ towards a \textbf{target} $t$ through a \textbf{sentiment expression} $e$, implicitly defining the relationships between these elements.

The two examples below (first in English, then in Basque) show the conception of sentiment graphs.

multilingual example

Rather than treating this as a sequence-labeling task, we can treat it as a bilexical dependency graph prediction task, although some decisions must me made. We create two versions (a) head-first and (b) head-final, shown below:

bilexical

Requirements

  1. python3
  2. pytorch
  3. matplotlib
  4. sklearn
  5. gensim
  6. numpy
  7. h5py
  8. transformers
  9. tqdm

Data collection and preprocessing

We provide the preprocessed bilexical sentiment graph data as conllu files in 'data/sent_graphs'. If you want to run the experiments, you can use this data directly. If, however, you are interested in how we create the data, you can use the following steps.

The first step is to download and preprocess the data, and then create the sentiment dependency graphs. The original data can be downloaded and converted to json files using the scripts found at https://github.com/jerbarnes/finegrained_data. After creating the json files for the finegrained datasets following the instructions, you can then place the directories (renamed to 'mpqa', 'ds_unis', 'norec_fine', 'eu', 'ca') in the 'data' directory.

After that, you can use the available scripts to create the bilexical dependency graphs, as mentioned in the paper.

cd data
./create_english_sent_graphs.sh
./create_euca_sent_graphs.sh
./create_norec_sent_graphs
cd ..

Experimental results

To reproduce the results, first you will need to download the word vectors used:

mkdir vectors
cd vectors
wget http://vectors.nlpl.eu/repository/20/58.zip
wget http://vectors.nlpl.eu/repository/20/32.zip
wget http://vectors.nlpl.eu/repository/20/34.zip
wget http://vectors.nlpl.eu/repository/20/18.zip
cd ..

You will similarly need to extract mBERT token representations for all datasets.

./do_bert.sh

Finally, you can run the SLURM scripts to reproduce the experimental results.

./scripts/run_base.sh
./scripts/run_bert.sh
Owner
Jeremy Barnes
I'm a professor of Natural Language Processing. My interests are in multi-linguality and incorporating diverse sources of information into neural networks.
Jeremy Barnes
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022