This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

Related tags

Deep LearningL2ight
Overview

L2ight

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

Introduction

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization. A subspace learning procedure with multi-level sparsity is integrated into L2ight to enable in-situ gradient evaluation and fast adaptation, unleashing the power of optics for real on-chip intelligence. L2ight outperforms prior ONN training protocols with 3-order-of-magnitude higher scalability and over 30X better efficiency, when benchmarked on various models and learning tasks. This synergistic framework is the first scalable on-chip learning solution that pushes this emerging field from intractable to scalable and further to efficient for next-generation self-learnable photonic neural chips.

flow teaser

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.1. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • custom_conv2d and custom_linear layers
        • utils.py: sampler and profiler
      • sparse_bp_*.py: model definition
      • sparse_bp_base.py: base model definition; identity calibration and mapping codes.
    • optimizer/: mixedtrain and flops optimizers
    • builder.py: build training utilities
  • script/: contains experiment scripts
  • train_pretrain.py, train_map.py, train_learn.py, train_zo_learn.py: training logic
  • compare_gradient.py: compare approximated gradients with true gradients for ablation

Usage

  • Pretrain model.
    > python3 train_pretrain.py config/cifar10/vgg8/pretrain.yml

  • Identity calibration and parallel mapping. Please set your hyperparameters in CONFIG=config/cifar10/vgg8/pm/pm.yml and run
    > python3 train_map.py CONFIG --checkpoint.restore_checkpoint=path/to/your/pretrained/checkpoint

  • Subspace learning with multi-level sampling. Please set your hyperparameters in CONFIG=config/cifar10/vgg8/ds/learn.yml and run
    > python3 train_learn.py CONFIG --checkpoint.restore_chekcpoint=path/to/your/mapped/checkpoint --checkpoint.resume=1

  • All scripts for experiments are in ./script. For example, to run subspace learning with feedback sampling, column sampling, and data sampling, you can write proper task setting in SCRIPT=script/vgg8/train_ds_script.py and run
    > python3 SCRIPT

  • Comparison experiments with RAD [ICLR 2021] and SWAT-U [NeurIPS 2020]. Run with the SCRIPT=script/vgg8/train_rad_script.py and script/vgg8/train_swat_script.py,
    > python3 SCRIPT

  • Comparison with FLOPS [DAC 2020] and MixedTrn [AAAI 2021]. Run with the METHOD=mixedtrain or flops,
    > python3 train_zo_learn.py config/mnist/cnn3/METHOD/learn.yml

Citing L2ight

@inproceedings{gu2021L2ight,
  title={L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Atif Hassan 103 Dec 14, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022