We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Overview

Logo We're Team Arson and we're using the power of predictive modeling to combat wildfires.

Arson Map

Inspiration

There’s been a lot of wildfires in California in recent years, and a lot of the most recent wildfires have been uncontained. The government does not have the capacity to deal with such a huge amount of wildfires so it has to pick and choose which fires to bring under control. This picking and choosing should be done based on wildfire and wind data in order to minimize the damage caused by wildfires We should also prioritize mitigating fires that can spread across many counties/ have a large chance of spreading further

What it does

Our project consists of a web app with an interactive map. We represent our wildfire as a MDP and determine how at risk counties are based on the fire location(s).

How we built it

We split the project into 2 main parts: web app and AI

Website

Artificial Intelligence

  • Represent the wildfire as a MDP (Markov Decision Process)
    • States: Counties
    • Actions: Traversing Counties
    • Probability distribution: generated from wind data
    • Transition Model: generated from wind data
    • Reward function: Uniform for every county burned (prone to change if scaled up)
  • Use bellman equation to iterate through counties and propagate the fire
    • Utility values ranging between 0 and 1 represent how at risk a county is
    • Screenshot
    • Run until utility values reach equilibrium or until 100 iterations are run
    • Gamma = 0.8
  • Represent the map as a graph
    • Counties are nodes
    • Wind speeds are edges
    • Assign each county with a risk (for reward function)
    • Spawn fires on specific counties

Challenges we ran into

Our project has a pretty large scope. We needed to develop a model and integrate it with a web app. This required extensive knowledge on AWS utilities and crisp communication between team members. The machine learning portion of this hackathon was difficult as we had to decide on what type of model to use for the wildfire and how to assign reward and utility values.

Accomplishments that we're proud of

We were able to integrate the web app with the model really quickly. This was surprising since usually connecting the pieces together will have a lot of bugs. It was also Austin, Raaj, and Romuz's first hackathons and this was a fairly complex project compared to a standard web app.

What we learned

This hackathon was a first for many of us. This was the first time any of us had implemented a machine learning model and connected it to a web app.

This was my first time at a hackathon and I couldn't have asked for better teammates than Jerry, Raaj, and Romuz. I learned so much over the last two days about machine learning, data science, React, and working as a team to help tackle some of California's greatest challenges. - Austin Rivard

As a first-year student, I have learned a lot of new skill sets while working with this team. I was happy to be a member of such an agile team. I learned numerous of new concepts, such as working with AWS, writing algorithms, and the graph data structures. - Romuz Abdulhamidov

What's next for Arson

  • Scale up to entire California to generate a better map during wildfire season
  • Generate more accurate Reward values for each county burned
  • Incorporate type 2 rewards based on R(state, action)
    • Wildfire gets bigger as it burns more land
    • Wildfire gets smaller in the presence of firefighters
  • Automatically train and deploy models by integrating real-time data for wind and wildfires

Demo

Screenshot

Owner
Jerry Lee
software engineer
Jerry Lee
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Retentioneering 581 Jan 07, 2023
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021