Code for the paper Task Agnostic Morphology Evolution.

Overview

Task-Agnostic Morphology Optimization

This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Abbeel, and Lerrel Pinto published at ICLR 2021.

The code has been cleaned up to make it easier to use. An older version of the code was made available with the ICLR submission here.

Setup

The code was tested and used on Ubuntu 20.04. Our baseline implementations use taskset, an ubuntu program for setting CPU affinity. You need taskset to run some of the experiments, and the code will fail without it.

Install the conda environment using the provided file via the command conda env create -f environment.yml. Given this project involves only state based RL, the environment does not install CUDA and the code is setup to use CPU. Activate the environment with conda activate morph_opt.

Next, make sure to install the optimal_agents package by running pip install -e . from the github directory. This will use the setup.py file.

The code is built on top of Stable Baselines 3, Pytorch, and Pytorch Geometric. The exact specified version of stable baselines 3 is required.

Running Experiments

Currently, configs for the 2D experiments have been pushed to the repo. I'm working on pushing more config files that form the basis for the experiments run. To run large scale experiments for the publication, we used additional AWS tools.

Evolution experiments can be run using the train_ea.py script found in the scripts directory. Below are example commands for running different morphology evolution algorithms:

python scripts/train_ea.py -p configs/locomotion2d/2d_tame.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_tamr.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_no_pruning.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_pruning.yaml

After running evolution to discover good morphologies, you can evaluate them using PPO via the provided eval configs.

python scripts/train_rl.py -p configs/locomotion2d/2d_eval.yaml

Note that you have to edit the config file to include either the path to the optimized morphology or a predefined type like random2d or cheetah. We evaluate all morphologies across a number of different environments. The provided configuration file runs evaluations for just one.

To better keep track of the experiment names, you can edit the name field in the config files.

By default, experiments are saved to the data directory. This can be changed by providing an output location with the -o flag.

Rendering, Testing, and Plotting

See the test scripts for viewing agents after they have been trained.

For plotting results like those in the paper, use the plotting scripts. Note that to use the plotting scripts correctly, a specific directory structure is required. Details for this can be found in optimal_agents/utils/plotter.py.

Citing

If you use this code. Please cite the paper.

Owner
Joey Hejna
Joey Hejna
๐ŸŒŠ Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
๐Ÿฅ‡ LG-AI-Challenge 2022 1์œ„ ์†”๋ฃจ์…˜ ์ž…๋‹ˆ๋‹ค.

LG-AI-Challenge-for-Plant-Classification Dacon์—์„œ ์ง„ํ–‰๋œ ๋†์—… ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ž‘๋ฌผ ๋ณ‘ํ•ด ์ง„๋‹จ AI ๊ฒฝ์ง„๋Œ€ํšŒ ์— ๋Œ€ํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. (colab directory์— ์ฝ”๋“œ๊ฐ€ ์ž˜ ์ •๋ฆฌ ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.) Requirements python

siwooyong 10 Jun 30, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. ๐Ÿ˜ƒ What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sysยญtems Seยญcuยญriยญty 27 Dec 22, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022