Code for Massive-scale Decoding for Text Generation using Lattices

Overview

Massive-scale Decoding for Text Generation using Lattices

Jiacheng Xu, Greg Durrett

TL;DR: a new search algorithm to construct lattices encoding many generation options; two key technical contributions: (1) best-first search, (2) path recombination.

Visualization

We provide a few examples in the vis folder and on my homepage. You need to download the html files to view and interact with the model outputs.

The complete set of outputs are available on Box.

Getting started

  • model contains all of the methods, including baselines like beam search, nucleus sampling, and our methods.
  • evaluation contains scripts for evaluation.
  • command are the prompts and shells we use to run the experiment.

Beam Search:

PYTHONPATH=./ python src/recom_search/command/run_pipeline.py -nexample 100  -ngram_suffix 4  -beam_size 16 -min_len 10 -max_len 35   -model bs 

Best-first Search:

PYTHONPATH=./ python src/recom_search/command/run_pipeline.py -nexample 100  -ngram_suffix 4  -beam_size 16 -min_len 10 -max_len 35   -model astar_baseline

Best-first Search with Recomb:

PYTHONPATH=./ python src/recom_search/command/run_pipeline.py -nexample 100  -ngram_suffix 4 -beam_size 16 -min_len 10 -max_len 35 -model astar -merge imp  -avg_score 0.75  -adhoc 

Best-first Search with Zip:

PYTHONPATH=./ python src/recom_search/command/run_pipeline.py -nexample 100  -ngram_suffix 4 -beam_size 16 -min_len 10 -max_len 35 -model astar -merge zip  -avg_score 0.75  -adhoc 

More detailed instructions coming soon!

Citation

@misc{xu-durrett-2021-massive,
    title={Massive-scale Decoding for Text Generation using Lattices},
    author={Jiacheng Xu and Greg Durrett},
    year={2021},
    eprint={2112.07660},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Contact

[email protected]

Owner
Jiacheng Xu
Fifth-year PhD @ UT Austin
Jiacheng Xu
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022