[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

Related tags

Deep LearningDoDNet
Overview

DoDNet

This repo holds the pytorch implementation of DoDNet:

DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets. (https://arxiv.org/pdf/2011.10217.pdf)

Requirements

Python 3.7
PyTorch==1.4.0
Apex==0.1
batchgenerators

Usage

0. Installation

  • Clone this repo
git clone https://github.com/jianpengz/DoDNet.git
cd DoDNet

1. MOTS Dataset Preparation

Before starting, MOTS should be re-built from the serveral medical organ and tumor segmentation datasets

Partial-label task Data source
Liver data
Kidney data
Hepatic Vessel data
Pancreas data
Colon data
Lung data
Spleen data
  • Download and put these datasets in dataset/0123456/.
  • Re-spacing the data by python re_spacing.py, the re-spaced data will be saved in 0123456_spacing_same/.

The folder structure of dataset should be like

dataset/0123456_spacing_same/
├── 0Liver
|    └── imagesTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
|    └── labelsTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
├── 1Kidney
├── ...

2. Model

Pretrained model is available in checkpoint

3. Training

  • cd `a_DynConv/' and run
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=$RANDOM train.py \
--train_list='list/MOTS/MOTS_train.txt' \
--snapshot_dir='snapshots/dodnet' \
--input_size='64,192,192' \
--batch_size=2 \
--num_gpus=2 \
--num_epochs=1000 \
--start_epoch=0 \
--learning_rate=1e-2 \
--num_classes=2 \
--num_workers=8 \
--weight_std=True \
--random_mirror=True \
--random_scale=True \
--FP16=False

4. Evaluation

CUDA_VISIBLE_DEVICES=0 python evaluate.py \
--val_list='list/MOTS/MOTS_test.txt' \
--reload_from_checkpoint=True \
--reload_path='snapshots/dodnet/MOTS_DynConv_checkpoint.pth' \
--save_path='outputs/' \
--input_size='64,192,192' \
--batch_size=1 \
--num_gpus=1 \
--num_workers=2

5. Post-processing

python postp.py --img_folder_path='outputs/dodnet/'

6. Citation

If this code is helpful for your study, please cite:

@inproceedings{zhang2021dodnet,
  title={DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets},
  author={Zhang, Jianpeng and Xie, Yutong and Xia, Yong and Shen, Chunhua},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={},
  year={2021}
}

Contact

Jianpeng Zhang ([email protected])

Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022