This repository contains the code and models for the following paper.

Overview

DC-ShadowNet

Introduction

This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network. (ICCV'2021) Yeying Jin, Aashish Sharma and Robby T. Tan

Abstract

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods.

Overview of the proposed method:

Datasets

  1. SRD (please download train and test from the authors). Extracted Shadow Masks in the SRD Dataset

  2. AISTD

  3. LRSS: Soft Shadow Dataset

  4. ISTD

  5. USR: Unpaired Shadow Removal Dataset

Shadow Removal Results:

  1. SDR Dataset DC-ShadowNet Results, All Results

  1. AISTD Dataset DC-ShadowNet Results, All Results

  2. LRSS Soft Shadow Dataset DC-ShadowNet Results, All Results

  3. ISTD Dataset DC-ShadowNet Results

  4. USR Dataset DC-ShadowNet Results

Evaluation

The default root mean squared error (RMSE) evaluation code used by all methods (including ours) actually computes mean absolute error (MAE).

  1. The faster version MAE evaluation code
  2. The original version MAE evaluation code

1.1 SRD Dataset, set the paths of the shadow removal result and the dataset in demo_srd_release.m and then run it.

Get the following Table 1 in the main paper on the SRD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.66 7.70 3.39
Mask-ShadowGAN Unpaired 6.40 11.46 4.29
DSC Paired 4.86 8.81 3.23
DeShadowNet Paired 5.11 3.57 8.82
Gong Prior 12.35 25.43 6.91
Input Image N/A 13.77 37.40 3.96

1.2 AISTD Dataset, set the paths of the shadow removal result and the dataset in demo_aistd_release.m and then run it.

Get the following Table 2 in the main paper on the AISTD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.6 10.3 3.5

1.3 LRSS Soft Shadow Dataset, set the paths of the shadow removal result and the dataset in demo_lrss_release.m and then run it.

Get the following Table 3 in the main paper on the LRSS dataset (size: 256x256).

Method Training All
DC-ShadowNet Unpaired 3.48
Input Image N/A 12.26

Pre-trained Model

  1. Download the pre-trained SRD model, put in results/SRD/model/

  2. Download the pre-trained AISTD model, put in results/AISTD/model/

  3. Download the pre-trained ISTD model, put in results/ISTD/model/

  4. Download the pre-trained USR model, put in results/USR/model/

Test

python main_test.py --dataset SRD --datasetpath YOURPATH --phase test

Results: results/SRD/iteration/outputB

Train

  1. Implement the papers On the removal of shadows from images (TPAMI,05) and Recovery of Chromaticity Image Free from Shadows via Illumination Invariance (ICCV,03)

Directory

  1. Download Datasets and run 1, get the Shadow-Free Chromaticity Maps after Illumination Compensation, and put them in the trainC folder, you should see the following directory structure.
${DC-ShadowNet-Hard-and-Soft-Shadow-Removal}
|-- dataset
    |-- SRD
      |-- trainA ## Shadow 
      |-- trainB ## Shadow-free 
      |-- trainC ## Shadow-Free Chromaticity Maps after Illumination Compensation
      |-- testA  ## Shadow 
      |-- testB  ## Shadow-free 
...
  1. python main.py --dataset SRD --phase train

Shadow-Robust Feature

Get the following Figure 5 in the main paper, VGG feature visualization code is in feature_release folder,

python test_VGGfeatures.py

Results: ./results_VGGfeatures/shadow_VGGfeatures/layernumber/imagenumber/visual_featurenumber_RMSE.jpg

Boundary Smoothness Loss

Get the following Figure 8 in the main paper, shadow boundary code is in boundary_smooth folder,

run getRTVdenMask.m

Results: input_softmask_boundary.jpg

Citation

Please kindly cite our paper if you are using our codes:

Owner
AuAgCu
Computer Vision/ Deep Learning
AuAgCu
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022